Continuous Domains for Function Spaces Using Spectral Compactification

Amin Farjudian¹ Achim Jung²

¹School of Mathematics University of Birmingham, United Kingdom A.Farjudian@bham.ac.uk

²School of Computer Science University of Birmingham, United Kingdom [A.Jung@bham.ac.uk](mailto:A.Farjudian@bham.ac.uk)

(MFPS, 19–21 June 2024, University of Oxford, United Kingdom)

Introduction

- Close link between topology and the theory of computation
- Clearly manifested in domain theory

Domain theory and mathematical analysis:

- (Non-algebraic) domains provide a natural computational framework for mathematical analysis
- Initiated by Edalat's work on dynamical systems (Edalat [1995\)](#page-27-0)
- Further developments:
	- differential equation solving (Edalat and Pattinson [2007a\)](#page-28-0)
	- stochastic processes (Bilokon and Edalat [2017\)](#page-27-1)
	- reachability analysis of hybrid systems (Edalat and Pattinson [2007b;](#page-28-1) Moggi et al. [2018\)](#page-29-0)
	- robustness analysis of neural networks (Zhou et al. [2023\)](#page-30-1).
- Local compactness: a desirable topological property.
- What to do in the absence of local compactness?
	- **substitute** constructions.
- **•** Examples:
	- robustness analysis of systems with state spaces that are not (locally) compact (Farjudian and Moggi [2023\)](#page-29-1)
	- solution of initial value problems (IVPs) with temporal discretization (Edalat, Farjudian, and Li [2023\)](#page-28-2).

$$
\begin{cases}\n y'(t) = f(y(t)), \\
y(t_0) = y_0,\n\end{cases}
$$
\n(1)

• $t_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}$, and $f : \mathbb{R} \to \mathbb{R}$ is a continuous vector field.

Assume that a solution exists over a lifetime of $[t_0, T]$

We search for a solution of [\(1\)](#page-3-0) in the space of functions from $[t_0, T]$ to the interval domain:

$$
\mathbb{IR} \coloneqq \{\mathbb{R}\} \cup \{[a,b] \,|\, a,b \in \mathbb{R} \text{ and } a \leq b\},\
$$

ordered by: $\forall X, Y \in \mathbb{R} : X \sqsubseteq Y \iff X \supseteq Y$.

Temporal Discretization

 \bullet By integrating both sides of [\(1\)](#page-3-0): $\forall t \in [t_0, T]$, $h \in [0, T - t]$:

$$
y(t+h) = y(t) + \int_t^{t+h} f(y(\tau)) d\tau.
$$

A general schema:

- **1.** For some $k \geq 1$, consider a partition $Q = (q_0, \ldots, q_k)$ of the interval $[t_0, T]$.
- 2 Let $Y(t_0) = y_0$.
- 3 For each $j \in \{0, ..., k-1\}$ and $h \in (0, q_{j+1} q_j]$:

$$
Y(q_j+h)\coloneqq Y(q_j)+I(q_j,h),
$$

where $I(q_j, h)$ is an interval enclosure of $\int_t^{t+h} f(y(\tau)) d\tau$.

Fixpoint Formulation (Flawed)

- **•** True solution (dark red), Initial enclosure (green)
- **•** Upper bound (black): Not upper semi-continuous
- **•** Lower bound (blue): Not lower semi-continuous

Upper Limit Topology

- In the function space $[[t_0, T] \rightarrow \mathbb{R}]$:
	- \bullet IR should be equipped with the Scott topology.
	- What about $[t_0, T]$?
- The Euclidean topology is not appropriate, since the upper (resp. lower) bounds in the previous figure were not upper (resp. lower) semi-continuous.
- The coarsest topology with respect to which the enclosures are continuous is the **upper limit topology** on $[t_0, T]$ with the collection:

 $\{(a, b) | a, b \in \mathbb{R}\}$

of half-open intervals as its base.

• But, this topology is not locally compact (Edalat, Farjudian, and Li [2023,](#page-28-2) Proposition 4.5).

Theorem 1 (Erker, Escardó, and Keimel [1998\)](#page-28-3)

For any topological space X and non-singleton bc-domain D , the function space ($[\mathbb{X} \to \mathbb{D}], \sqsubseteq$) is a bc-domain $\iff \mathbb{X}$ is core-compact.

- Also, for sober spaces, core compactness and local compactness are equivalent.
	- We work primarily with Sober spaces.
- As such, **with the upper limit topology, we cannot obtain a continuous domain of functions**.

Basic idea: When X is not core-compact, construct a topological space $\hat{\mathbb{X}}$ with the following properties:

- $\hat{\mathbf{X}}$ is core-compact.
- $\bullet \times$ can be embedded into $\hat{\mathbb{X}}$ as a dense subspace.
- **3** The function spaces $[\mathbb{X} \to \mathbb{D}]$ and $[\mathbb{\hat{X}} \to \mathbb{D}]$ are related via a Galois connection.

Then:

- The (non-continuous) dcpo $[\mathbb{X} \rightarrow \mathbb{D}]$ can be used for implementation of algorithms,
- analysis of computability can be carried out over the continuous domain $[\hat{\mathbb{X}} \to \mathbb{D}]$,
	- subject to the existence of a suitable effective structure over $[\mathbb{X} \rightarrow \mathbb{D}].$

Basic Galois Connection

Assume that $\iota : \mathbb{X} \to \mathbb{Y}$ is a dense embedding of T_0 spaces, and D is a bc-domain. Define:

o .

\n- \n
$$
\mathsf{Q} \in [\mathbb{Y} \to \mathbb{D}]: \mathsf{Q}^* := \mathsf{Q} \circ \iota \;,
$$
\n
\n- \n
$$
\mathsf{Q} \times \mathsf{Y} \in [\mathbb{X} \to \mathbb{D}]: \forall y \in Y: f_*(y) := \bigvee \left\{ \bigwedge f(\iota^{-1}(U)) \middle| y \in U \in \tau_{\mathbb{Y}} \right\}.
$$
\n
\n

Theorem 2 (Galois connection)

The maps $(\cdot)^*$ and $(\cdot)_*$ form a Galois connection:

$$
[\mathbb{X} \to \mathbb{D}] \xrightarrow[\begin{array}{c} \langle \cdot \rangle_* \\ \langle \cdot \rangle^* \end{array} [\mathbb{Y} \to \mathbb{D}],
$$

in the category *Po* of posets and monotonic maps. Furthermore:

1 The map $(\cdot)^*$ is surjective, and $(\cdot)_*$ is injective.

2
$$
(\cdot)^* \circ (\cdot)_* = id_{[\mathbb{X} \to \mathbb{D}]}
$$
, *i*. e., $\forall f \in [\mathbb{X} \to \mathbb{D}] : (f_*)^* = f$.

3 The left adjoint $(\cdot)^*$ is Scott continuous.

Definition 3 (Core-compactification)

A core-compact space $\mathbb X'$ is a *core-compactification* of $\mathbb X \stackrel{\scriptscriptstyle\triangle}{\Longleftrightarrow}$ X can be embedded as a dense sub-space of X' .

Examples: Classical compactification methods, e. g.

- **1** The one-point (Alexandroff) compactification $\mathbb{R}^n \cup \{\infty\}$ of \mathbb{R}^n .
	- Applicable only to locally compact spaces.
- **2** The Stone-Cech compactification β X of a Tychonoff space X.
	- Lack of an explicit description even for simple topological spaces X.

Definition 4 (Viable base)

Assume that $\mathbb{X} \equiv (X, \tau_{\mathbb{X}})$ is a topological space. We say that $\Omega_0 \subseteq \tau_{\mathbb{X}}$ is a viable base for \mathbb{X} if:

- \bullet it is closed under finite unions and finite intersections, and
- **2** it forms a base for the topology $\tau_{\mathbb{X}}$.

Remarks:

- Ω_0 must contain $\emptyset = \cup \emptyset$ and $X = \cap \emptyset$.
- **2** Ω_0 is a bounded distributive lattice with $\wedge \coloneqq \cap$ and $\vee \coloneqq \cup$.
- **3** There is always at least one viable base, i.e., $\Omega_0 = \tau_{\mathbb{X}}$.

Bounded Distributive Lattice and Spectral Spaces

Since every viable base is a bounded distributive lattice, we may refer to the following equivalence of categories to construct a spectral compactification (Abramsky and Jung [1994,](#page-27-2) Section 7).:

$$
\mathcal{BDLat}^{op} \xrightarrow[\frac{\text{Id}^{op} \rightarrow \text{Ad}^{op}]} \mathcal{A} f a l^{op} \xrightarrow[\frac{\text{d} \rightarrow \text{d}]{\text{d} \rightarrow}]} \text{Spec}
$$

Definition 5 (Spectral compactification: $\mathbb{\hat{X}}_{\Omega_0}$)

Assume that $\mathbb{X} \equiv (X, \tau_X)$ is a T_0 topological space and $\Omega_0 \subseteq \tau_X$ is a viable base of X. By the **spectral compactification of** X **generated by** Ω_0 we mean the topological space:

$$
\hat{\mathbb{X}}_{\Omega_0} \equiv (\hat{X}_{\Omega_0}, \hat{\tau}) := \text{pt}(\text{Idl}(\Omega_0)),
$$

in which $\hat{\tau}$ is the hull-kernel topology.

$$
\mathcal{BDLat}^{op} \xrightarrow[\frac{\mathrm{Id}^{op}}{\mathcal{K}^{op}}]{} \mathcal{A} f a l^{op} \xrightarrow[\frac{\Gamma}{\Omega}]{\mathrm{pt}} \mathcal{S} pec
$$

BDLat

Objects: bounded distributive lattices Arrows: bounded lattice homomorphisms

Afal

Objects: algebraic fully (i. e., ⊤ ≪ ⊤) arithmetic lattices Arrows: frame homomorphisms

Spec

Objects: spectral (i. e., compact, sober, coherent, and strongly locally compact) spaces

Arrows: spectral maps (i. e., $f^{-1}(K)$ is compact-open for all compact-open K)

Strongly Locally Compact Spaces

Among the various features of spectral spaces, the following stands out:

Definition 6 (Strongly Locally Compact)

We say that Y is a strongly locally compact space if its topology has a base of compact-open subsets.

Proposition 1

Let $\mathbb{Y} = (Y, \tau_Y)$ be a topological space. A set $Q \subseteq Y$ is compact-open if and only if Q is a finite element of the complete lattice $(\tau_{\mathbb{Y}}, \subseteq)$, i. e., $Q \ll Q$.

Lemma 7

A topological space $\mathbb{Y} = (Y, \tau_Y)$ is strongly locally compact if and only if (τ_Y, \subseteq) is an algebraic lattice.

- For any complete lattice $\mathbb{L} \equiv (L, \sqsubseteq)$, by a point of $\mathbb L$ we mean a completely prime filter $F \subseteq L$.
- We let $pt(L)$ denote the set of points of L with the so-called hull-kernel topology:
	- Open sets $O_u := \{x \in pt(L) \mid u \in x\}$, where u ranges over all the elements of \overline{L}
- **•** For any morphism $g : \mathbb{L} \to \mathbb{K}$ in $\mathcal{A}\text{fal}^{\text{op}}$ (i.e., a frame homomorphism $g : \mathbb{K} \to \mathbb{L}$) the function $pt(g) : pt(\mathbb{L}) \to pt(\mathbb{K})$ maps every completely prime filter x of $\mathbb L$ to $g^{-1}(x)$.

Hull-Kernel Topology $\hat{\tau}$ on $\hat{\mathbb{X}}_{Q_2}$

In the hull-kernel topology $\hat{\tau}$ on $\hat{\mathbb{X}}_{\Omega_0},$ every open set is of the form:

$$
O_I := \{y \in \hat{X}_{\Omega_0} \mid I \in y\},\
$$

in which *I* ranges over Idl (Ω_0) .

Theorem 8

The set ${O_{\text{l}} w \mid W \in \Omega_0}$ forms a base for the hull-kernel topology $\hat{\tau}$ on $\hat{\mathbb{X}}_{\Omega_0}$.

Corollary 9

When Ω_0 is countable, $\hat{\mathbb{X}}_{\Omega_0}$ is second-countable.

Example 10 (rational upper limit topology)

- Let $\mathbb{R}_{\{Q\}} \equiv (\mathbb{R}, \tau_{\{Q\}})$ denote the topological space with \mathbb{R} as the carrier set endowed with the rational upper limit topology $\tau_{\{Q\}}$ carrier set endowed with the rational upper limit topology $\tau_{\text{(Q)}}$,
cannita $B_{\text{CC}} = \frac{(q, h|q, h \in \text{Q})}{(q, h|q, h \in \text{Q})}$ • with $B_{\text{Q}} := \{(a, b] | a, b \in \mathbb{Q}\}\)$ as a base.
- As for a viable Ω_0 , an immediate option is $\tau_{\text{(Q)}}$.
	- By Theorem [8,](#page-16-0) it does not lead to a second-countable $\hat{\mathbb{X}}_{\Omega_0}.$
- Instead, we take Ω_0 to consist of all the finite unions of elements of $B_{(\mathbb{Q}]}$.
	- This is a countable set which can be effectively enumerated. By Corollary [9,](#page-16-1) the space $\hat{\mathbb{X}}_{\Omega_0}$ must also be second-countable.

Core-Compactification

- The rational upper limit topology was used in (Edalat, Farjudian, and Li [2023\)](#page-28-2) for solution of IVPs with temporal discretization.
- In (Edalat, Farjudian, and Li [2023\)](#page-28-2), the domain $[\mathbb{Y} \to \mathbb{D}]$ is constructed by rounded ideal completion of a suitable abstract basis of step functions.
- \bullet Here, we work directly on \mathbb{X} :

Theorem 11 (Core-compactification)

Assume that X is a T_0 topological space. If Ω_0 is a viable base of $\mathbb X$, then the spectral space $\hat{\mathbb X}_{\Omega_0}$ is a core-compactification of $\mathbb X.$

As we will see (Theorem [15\)](#page-22-0) the two approaches lead to equivalent outcomes.

Step Functions (Reminder)

Assume that $\mathbb{X} \equiv (X, \tau_X)$ is a topological space, and $\mathbb{D} \equiv (D, \sqsubseteq)$ is a pointed directed-complete partial order (pointed dcpo), with bottom element ⊥.

• For every open set $O \in \tau_{\mathbb{X}}$, and every element $b \in D$, we define the single-step function $b_{XO}: X \rightarrow D$ as follows:

$$
b\chi_O(x) := \left\{ \begin{array}{ll} b, & \text{if } x \in O, \\ \perp, & \text{if } x \in X \setminus O. \end{array} \right.
$$

By a step-function we mean the join of a (consistent) finite set of single-step functions.

Theorem 12

Assume that $\mathbb{X} \equiv (X, \tau_{\mathbb{X}})$ is a topological space and $\Omega_0 \subseteq \tau_{\mathbb{X}}$ is a viable base of X. Let $\mathbb{D} \equiv (D, \sqsubseteq)$ be a bc-domain and assume that $D_0 \subseteq D$ is a basis for D . Then, $[\hat{\mathbb{X}}_{\Omega_0} \to D]$ is a bc-domain with a basis $\hat{\mathbb{B}}$ of step-functions of the form:

$$
\hat{\mathbb{B}} = \Big\{ \bigvee_{i \in I} b_{i} \chi_{O_{\downarrow W_i}} \mid I \text{ is finite, } \big\{ b_{i} \chi_{O_{\downarrow W_i}} \big\vert i \in I \Big\} \text{ is consistent,}
$$
\n
$$
\forall i \in I : W_i \in \Omega_0, b_i \in D_0
$$

o . (2)

Corollary 13

If Ω_0 is countable and D is ω -continuous, then $[\hat{\mathbb{X}}_{\Omega_0} \to \mathbb{D}]$ is also ω-continuous.

Way-Below Relation over $[\hat{\mathbb{X}}_{Q_2} \to \mathbb{D}]$

On single-step functions, assuming that $b \neq \perp$, we have:

$$
b\chi_{O_\downarrow w} \ll b'\chi_{O_\downarrow w'} \iff W \subseteq W'
$$
 and $b \ll b'.$

Lemma 14

The way-below relation on step functions of $\hat{\mathbb{B}}$ in [\(2\)](#page-0-1) can be expressed as:

$$
\bigvee_{i\in I}b_{i}\chi_{O_{\downarrow W_{i}}}\ll \bigvee_{j\in J}b'_{j}\chi_{O_{\downarrow W'_{j}}}\iff \forall i\in I: W_{i}\subseteq U_{i},
$$

in which
$$
U_i \in \Omega_0
$$
 satisfies $O_{\downarrow U_i} = (\bigvee_{j \in J} b'_j \chi_{O_{\downarrow W'_j}})^{-1} (\hat{\uparrow} b_i)$.

Lemma [14](#page-21-0) suggests an alternative approach to obtaining a domain of functions based on abstract bases without referring to Stone duality.

Equivalent Construction via Abstract Bases

We define the abstract basis ($\mathbb{B}_{\text{abs}}, \triangleleft$) as follows:

$$
\mathbb{B}_{\text{abs}} := \{ f : X \to D \mid f = \bigvee_{i \in I} b_{i} \chi_{O_{i}},
$$

\n*I* is finite, $\forall i \in I : O_{i} \in \Omega_{0}$ and $b_{i} \in D_{0} \}.$

As for the binary relation \triangleleft , considering Lemma [14,](#page-21-0) we define:

$$
\bigvee_{i\in I}b_{i}\chi_{O_{i}}\lhd\bigvee_{j\in J}b'_{j}\chi_{O'_{j}}\iff\forall i\in I: O_{i}\subseteq\big(\bigvee_{j\in J}b'_{j}\chi_{O'_{j}}\big)^{-1}(\hat{\uparrow}b_{i}).
$$

Theorem 15

Assume that the domain W is the rounded ideal completion of $(\mathbb{B}_{\text{abs}}, \triangleleft)$. Then $W \cong [\hat{\mathbb{X}}_{\Omega_0} \to \mathbb{D}]$.

Galois Connection Revisited

Recall from Theorem [2](#page-9-0) the following Galois connection in the category *Po* of posets and monotonic maps:

$$
[\mathbb{X} \to \mathbb{D}] \xrightarrow[\cdot]{\cdot} [\hat{\mathbb{X}}_{\Omega_0} \to \mathbb{D}] \cong \mathcal{W},
$$

in which:

the map $(\cdot)^*$ is surjective, and $(\cdot)_*$ is injective.

$$
\bullet (\cdot)^* \circ (\cdot)_* = \mathrm{id}_{\llbracket \mathbb{X} \to \mathbb{D} \rrbracket}, \, i.e., \, \forall f \in \llbracket \mathbb{X} \to \mathbb{D} \rrbracket : (f_*)^* = f.
$$

Hence:

- computations take place in the dcpo $[\mathbb{X} \to \mathbb{D}]$.
- **computable analysis is done in the (effectively given) domain** $[\mathbb{X}_{\Omega_0} \to \mathbb{D}] \cong W$.
- the left and right adjoints are used for moving between the two function spaces.

Comparison with Type-II Theory of Effectivity (TTE)

- We investigated a computational framework for function spaces over topological spaces that are not core-compact, e. g.
	- Upper limit topology (IVP solving)
	- Infinite-dimensional Banach spaces (PDE solving, functional analysis, etc.)
- In our framework, computability is analyzed in the continuous domain $[\hat{\mathbb{X}}_{\Omega_0} \to \mathbb{D}]$.
- In Type-II Theory of Effectivity (TTE) (Weihrauch [2000\)](#page-29-2), computability is analyzed via admissible representations of the function space $\mathbb{D}^{\mathbb{X}}$.

Question 1

In what ways are our framework and TTE related?

In particular, what is the relationship between the topology on $\mathbb{D}^{\mathbb{X}}$ induced by an admissible representation, and the Scott topology on $[\mathbb{\hat{X}}_{Q_0} \to \mathbb{D}]$?

Applications

Ordinary Differential Equations (ODEs):

- In (Edalat, Farjudian, and Li [2023\)](#page-28-2), we constructed a domain using abstract bases for solution of IVPs with temporal discretization.
- In Theorem [15,](#page-22-0) we showed that the same domain (up to isomorphism) can be obtained using spectral compactification.

Partial Differential Equations (PDEs):

• We expect spectral compactification to be useful in domain theoretic solution of partial differential equations (PDEs) as well.

Stochastic Processes with Right-Continuous Jumps:

• lower limit topology (not core-compact).

Stable Compactification

- Spectral compactification provides another angle on the construction obtained via abstract bases in (Edalat, Farjudian, and Li [2023\)](#page-28-2).
- We believe that the construction based on compactification has some theoretical advantages.
	- Compactification is a central topic in topology.
	- Our construction can be obtained as a special case of Smyth's stable compactification (Smyth [1992\)](#page-29-3) by considering fine quasi-proximities.

Question 2

Are there any concrete applications for non-spectral stable compactification (obtained via non-fine quasi-proximities) in the way that spectral compactification has been useful in IVP solving?

References: I

- ▶ [AJ94] Samson Abramsky and Achim Jung. "Domain Theory". In: Handbook of Logic in Computer Science. Ed. by S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum. Vol. 3. Clarendon Press, Oxford, 1994, pp. 1–168.
- ▶ [BE17] Paul Bilokon and Abbas Edalat. "A Domain-Theoretic Approach to Brownian Motion and General Continuous Stochastic Processes". In: Theoretical Computer Science 691 (2017), pp. 10–26. poi: [10.1016/j.tcs.2017.07.016](https://doi.org/10.1016/j.tcs.2017.07.016).
- ▶ [Eda95] Abbas Edalat. "Dynamical Systems, Measures and Fractals via Domain Theory". In: Information and Computation 120.1 (1995), pp. 32–48.

References: II

- \triangleright [EEK98] Thomas Erker, Martín Hötzel Escardó, and Klaus Keimel. "The Way-Below Relation of Function Spaces Over Semantic Domains". In: Topology and its Applications 89.1 (1998), pp. 61–74. poi: [10.1016/S0166-8641\(97\)00226-5](https://doi.org/10.1016/S0166-8641(97)00226-5).
- ▶ [EFL23] Abbas Edalat, Amin Farjudian, and Yiran Li. "Recursive Solution of Initial Value Problems with Temporal Discretization". In: Theoretical Computer Science (2023), p. 114221. doi: [10.1016/j.tcs.2023.114221](https://doi.org/10.1016/j.tcs.2023.114221).
- ▶ [EP07a] Abbas Edalat and Dirk Pattinson. "A domain-theoretic account of Picard's theorem". In: LMS Journal of Computation and Mathematics 10 (2007), pp. 83–118.
- ▶ [EP07b] Abbas Edalat and Dirk Pattinson. "Denotational semantics of hybrid automata". In: The Journal of Logic and Algebraic Programming 73.1 (2007), pp. 3–21.

References: III

- ▶ [FM23] Amin Farjudian and Eugenio Moggi. "Robustness, Scott continuity, and Computability". In: Mathematical Structures in Computer Science 33.6 (2023), pp. 536–572. doi: [10.1017/S0960129523000233](https://doi.org/10.1017/S0960129523000233).
- ▶ [Mog18] Eugenio Moggi, Amin Farjudian, Adam Duracz, and Walid Taha. "Safe & Robust Reachability Analysis of Hybrid Systems". In: Theoretical Computer Science 747 (2018), pp. 75–99.
- ▶ [Smy92] Michael B. Smyth. "Stable Compactification I". In: Journal of the London Mathematical Society s2-45.2 (1992), pp. 321–340. doi: [10.1112/jlms/s2-45.2.321](https://doi.org/10.1112/jlms/s2-45.2.321).
- ▶ [Wei00] Klaus Weihrauch. Computable Analysis, An Introduction. Springer, 2000.

References: IV

▶ [Zho23] Can Zhou, Razin A. Shaikh, Yiran Li, and Amin Farjudian. "A domain-theoretic framework for robustness analysis of neural networks". In: Mathematical Structures in Computer Science 33.2 (2023), pp. 68–105. doi: [10.1017/S0960129523000142](https://doi.org/10.1017/S0960129523000142).