Continuous Domains for Function Spaces Using Spectral Compactification

Amin Farjudian¹ Achim Jung²

¹School of Mathematics University of Birmingham, United Kingdom A.Farjudian@bham.ac.uk

²School of Computer Science University of Birmingham, United Kingdom A.Jung@bham.ac.uk

(MFPS, 19-21 June 2024, University of Oxford, United Kingdom)

Introduction

- Close link between topology and the theory of computation
- Clearly manifested in domain theory

Domain theory and mathematical analysis:

- (Non-algebraic) domains provide a natural computational framework for mathematical analysis
- Initiated by Edalat's work on dynamical systems (Edalat 1995)
- Further developments:
 - differential equation solving (Edalat and Pattinson 2007a)
 - stochastic processes (Bilokon and Edalat 2017)
 - reachability analysis of hybrid systems (Edalat and Pattinson 2007b; Moggi et al. 2018)
 - robustness analysis of neural networks (Zhou et al. 2023).

- Local compactness: a desirable topological property.
- What to do in the absence of local compactness?
 - substitute constructions.
- Examples:
 - robustness analysis of systems with state spaces that are not (locally) compact (Farjudian and Moggi 2023)
 - solution of initial value problems (IVPs) with temporal discretization (Edalat, Farjudian, and Li 2023).

$$\begin{pmatrix} y'(t) = f(y(t)), \\ y(t_0) = y_0, \end{cases}$$
 (1)

• $t_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}$, and $f : \mathbb{R} \to \mathbb{R}$ is a continuous vector field.

Assume that a solution exists over a lifetime of $[t_0, T]$

• We search for a solution of (1) in the space of functions from [*t*₀, *T*] to the interval domain:

$$\mathbb{IR} \coloneqq \{\mathbb{R}\} \cup \{[a, b] \mid a, b \in \mathbb{R} \text{ and } a \leq b\},\$$

ordered by: $\forall X, Y \in \mathbb{IR} : X \sqsubseteq Y \iff X \supseteq Y$.

Temporal Discretization

• By integrating both sides of (1): $\forall t \in [t_0, T], h \in [0, T - t]$:

$$y(t+h) = y(t) + \int_t^{t+h} f(y(\tau)) \,\mathrm{d}\tau.$$

A general schema:

- For some k ≥ 1, consider a partition Q = (q₀,...,q_k) of the interval [t₀, T].
- $e Let Y(t_0) \coloneqq y_0.$
- **③** For each *j* ∈ {0, . . . , *k* − 1} and *h* ∈ (0, $q_{j+1} q_j$]:

$$Y(q_j+h) \coloneqq Y(q_j) + I(q_j,h),$$

where $I(q_j, h)$ is an interval enclosure of $\int_t^{t+h} f(y(\tau)) d\tau$.

Fixpoint Formulation (Flawed)

- True solution (dark red), Initial enclosure (green)
- Upper bound (black): Not upper semi-continuous
- Lower bound (blue): Not lower semi-continuous

- In the function space $[[t_0, T] \rightarrow \mathbb{IR}]$:
 - IR should be equipped with the Scott topology.
 - What about [t₀, T]?
- The Euclidean topology is not appropriate, since the upper (resp. lower) bounds in the previous figure were not upper (resp. lower) semi-continuous.
- The coarsest topology with respect to which the enclosures are continuous is the **upper limit topology** on [*t*₀, *T*] with the collection:

 $\{(a, b] \mid a, b \in \mathbb{R}\}$

of half-open intervals as its base.

• But, this topology is not locally compact (Edalat, Farjudian, and Li 2023, Proposition 4.5).

Theorem 1 (Erker, Escardó, and Keimel 1998)

For any topological space X and non-singleton bc-domain \mathbb{D} , the function space ($[X \to \mathbb{D}], \sqsubseteq$) is a bc-domain $\iff X$ is core-compact.

- Also, for sober spaces, core compactness and local compactness are equivalent.
 - We work primarily with Sober spaces.
- As such, with the upper limit topology, we cannot obtain a continuous domain of functions.

Basic idea: When \mathbb{X} is not core-compact, construct a topological space $\hat{\mathbb{X}}$ with the following properties:

- $\hat{\mathbb{X}}$ is core-compact.
- 2 X can be embedded into $\hat{\mathbb{X}}$ as a dense subspace.
- Solution Spaces [X → D] and [X̂ → D] are related via a Galois connection.

Then:

- The (non-continuous) dcpo [X → D] can be used for implementation of algorithms,
- analysis of computability can be carried out over the continuous domain [Â → D],
 - subject to the existence of a suitable effective structure over $[\hat{\mathbb{X}} \to \mathbb{D}].$

Basic Galois Connection

Assume that $\iota : \mathbb{X} \to \mathbb{Y}$ is a dense embedding of T_0 spaces, and \mathbb{D} is a bc-domain. Define:

•
$$\forall g \in [\mathbb{Y} \to \mathbb{D}] : g^* \coloneqq g \circ \iota$$
,
• $\forall f \in [\mathbb{X} \to \mathbb{D}] : \forall y \in Y : f_*(y) \coloneqq \bigvee \{ \land f(\iota^{-1}(U)) \mid y \in U \in \tau_{\mathbb{Y}} \}.$

Theorem 2 (Galois connection)

The maps $(\cdot)^*$ and $(\cdot)_*$ form a Galois connection:

$$[\mathbb{X} \to \mathbb{D}] \xrightarrow[(\cdot)^*]{\tau} [\mathbb{Y} \to \mathbb{D}],$$

in the category $\mathcal{P}o$ of posets and monotonic maps. Furthermore:

• The map $(\cdot)^*$ is surjective, and $(\cdot)_*$ is injective.

$$(\cdot)^* \circ (\cdot)_* = \operatorname{id}_{[\mathbb{X} \to \mathbb{D}]}, \, i. \, e., \, \forall f \in [\mathbb{X} \to \mathbb{D}] : (f_*)^* = f.$$

The left adjoint (·)* is Scott continuous.

Definition 3 (Core-compactification)

A core-compact space \mathbb{X}' is a *core-compactification* of $\mathbb{X} \iff \mathbb{X}$ can be embedded as a dense sub-space of \mathbb{X}' .

Examples: Classical compactification methods, e.g.

- The one-point (Alexandroff) compactification $\mathbb{R}^n \cup \{\infty\}$ of \mathbb{R}^n .
 - Applicable only to locally compact spaces.
- **2** The Stone-Čech compactification βX of a Tychonoff space X.
 - Lack of an explicit description even for simple topological spaces X.

Definition 4 (Viable base)

Assume that $\mathbb{X} \equiv (X, \tau_{\mathbb{X}})$ is a topological space. We say that $\Omega_0 \subseteq \tau_{\mathbb{X}}$ is a *viable base* for \mathbb{X} if:

- it is closed under finite unions and finite intersections, and
- 3 it forms a base for the topology τ_X .

Remarks:

- Ω_0 must contain $\emptyset = \bigcup \emptyset$ and $X = \cap \emptyset$.
- **2** Ω_0 is a bounded distributive lattice with $\wedge := \cap$ and $\vee := \bigcup$.
- **③** There is always at least one viable base, i. e., $\Omega_0 = \tau_X$.

Bounded Distributive Lattice and Spectral Spaces

Since every viable base is a bounded distributive lattice, we may refer to the following equivalence of categories to construct a spectral compactification (Abramsky and Jung 1994, Section 7).:

$$\mathcal{BDLat}^{op} \xrightarrow[\mathcal{K}^{op}]{\operatorname{T}} \mathcal{Afal}^{op} \xrightarrow[\mathcal{K}^{op}]{\operatorname{T}} \mathcal{Afal}^{op} \xrightarrow[\mathcal{K}^{op}]{\operatorname{T}} \mathcal{Spec}$$

Definition 5 (Spectral compactification: $\hat{\mathbb{X}}_{\Omega_0}$)

Assume that $\mathbb{X} \equiv (X, \tau_{\mathbb{X}})$ is a T_0 topological space and $\Omega_0 \subseteq \tau_{\mathbb{X}}$ is a viable base of \mathbb{X} . By the **spectral compactification of** \mathbb{X} **generated by** Ω_0 we mean the topological space:

$$\hat{\mathbb{X}}_{\Omega_0} \equiv (\hat{X}_{\Omega_0}, \hat{\tau}) \coloneqq \mathrm{pt}(\mathrm{Idl}(\Omega_0)),$$

in which $\hat{\tau}$ is the hull-kernel topology.

$$\mathcal{BDLat}^{op} \xrightarrow[\mathcal{K}^{op}]{\tau} \mathcal{Afal}^{op} \xrightarrow[\mathcal{K}^{op}]{\tau} \mathcal{Afal}^{op} \xrightarrow[\mathcal{K}^{op}]{\tau} \mathcal{Spec}$$

• BDLat

Objects: bounded distributive lattices Arrows: bounded lattice homomorphisms

• Afal

Objects: algebraic fully (i. e., $\top \ll \top$) arithmetic lattices Arrows: frame homomorphisms

• Spec

Objects: spectral (i. e., compact, sober, coherent, and strongly locally compact) spaces

Arrows: spectral maps (i. e., $f^{-1}(K)$ is compact-open for all compact-open K)

Strongly Locally Compact Spaces

Among the various features of spectral spaces, the following stands out:

Definition 6 (Strongly Locally Compact)

We say that \mathbb{Y} is a *strongly locally compact* space if its topology has a base of compact-open subsets.

Proposition 1

Let $\mathbb{Y} = (Y, \tau_{\mathbb{Y}})$ be a topological space. A set $Q \subseteq Y$ is compact-open if and only if Q is a finite element of the complete lattice $(\tau_{\mathbb{Y}}, \subseteq)$, *i.e.*, $Q \ll Q$.

Lemma 7

A topological space $\mathbb{Y} = (Y, \tau_{\mathbb{Y}})$ is strongly locally compact if and only if $(\tau_{\mathbb{Y}}, \subseteq)$ is an algebraic lattice.

- For any complete lattice L = (L, ⊑), by a point of L we mean a completely prime filter F ⊆ L.
- We let pt(L) denote the set of points of L with the so-called hull-kernel topology:
 - Open sets O_u := {x ∈ pt(L) | u ∈ x}, where u ranges over all the elements of L
- For any morphism g : L → K in Afal^{op} (i. e., a frame homomorphism g : K → L) the function pt(g) : pt(L) → pt(K) maps every completely prime filter x of L to g⁻¹(x).

Hull-Kernel Topology $\hat{ au}$ on $\hat{\mathbb{X}}_{\Omega_0}$

In the hull-kernel topology $\hat{\tau}$ on $\hat{\mathbb{X}}_{\Omega_0},$ every open set is of the form:

$$O_I := \{ y \in \hat{X}_{\Omega_0} \mid I \in y \},\$$

in which *I* ranges over $Idl(\Omega_0)$.

Theorem 8

The set $\{O_{\downarrow W} \mid W \in \Omega_0\}$ forms a base for the hull-kernel topology $\hat{\tau}$ on $\hat{\mathbb{X}}_{\Omega_0}$.

Corollary 9

When Ω_0 is countable, $\hat{\mathbb{X}}_{\Omega_0}$ is second-countable.

Example 10 (rational upper limit topology)

- Let R_{(Q]} ≡ (R, τ_{(Q]}) denote the topological space with R as the carrier set endowed with the rational upper limit topology τ_{(Q]},
 with B_{(Ω} := {(a, b) | a, b ∈ Ω) as a base.
 - with $B_{(\mathbb{Q}]} \coloneqq \{(a, b] \mid a, b \in \mathbb{Q}\}$ as a base.
- As for a viable Ω₀, an immediate option is τ_(Q).
 - By Theorem 8, it does not lead to a second-countable Â_{Ω0}.
- Instead, we take Ω₀ to consist of all the finite unions of elements of B_{(Q]}.
 - This is a countable set which can be effectively enumerated. By Corollary 9, the space $\hat{\mathbb{X}}_{\Omega_0}$ must also be second-countable.

Core-Compactification

- The rational upper limit topology was used in (Edalat, Farjudian, and Li 2023) for solution of IVPs with temporal discretization.
- In (Edalat, Farjudian, and Li 2023), the domain [𝒴 → D] is constructed by rounded ideal completion of a suitable abstract basis of step functions.
- Here, we work directly on X:

Theorem 11 (Core-compactification)

Assume that \mathbb{X} is a T₀ topological space. If Ω_0 is a viable base of \mathbb{X} , then the spectral space $\hat{\mathbb{X}}_{\Omega_0}$ is a core-compactification of \mathbb{X} .

• As we will see (Theorem 15) the two approaches lead to equivalent outcomes.

Step Functions (Reminder)

Assume that $\mathbb{X} \equiv (X, \tau_{\mathbb{X}})$ is a topological space, and $\mathbb{D} \equiv (D, \sqsubseteq)$ is a pointed directed-complete partial order (pointed dcpo), with bottom element \bot .

For every open set *O* ∈ τ_X, and every element *b* ∈ *D*, we define the single-step function *b*_{XO} : *X* → *D* as follows:

$$b_{\chi_O}(x) \coloneqq \begin{cases} b, & \text{if } x \in O, \\ \bot, & \text{if } x \in X \setminus O. \end{cases}$$

 By a step-function we mean the join of a (consistent) finite set of single-step functions.

Theorem 12

Assume that $\mathbb{X} \equiv (X, \tau_{\mathbb{X}})$ is a topological space and $\Omega_0 \subseteq \tau_{\mathbb{X}}$ is a viable base of \mathbb{X} . Let $\mathbb{D} \equiv (D, \sqsubseteq)$ be a bc-domain and assume that $D_0 \subseteq D$ is a basis for \mathbb{D} . Then, $[\hat{\mathbb{X}}_{\Omega_0} \to \mathbb{D}]$ is a bc-domain with a basis $\hat{\mathbb{B}}$ of step-functions of the form:

$$\hat{\mathbb{B}} = \left\{ \bigvee_{i \in I} b_{i \chi_{O_{\downarrow} W_i}} \mid I \text{ is finite, } \left\{ b_{i \chi_{O_{\downarrow} W_i}} \mid i \in I \right\} \text{ is consistent,} \\ \forall i \in I : W_i \in \Omega_0, b_i \in D_0 \right\}$$

Corollary 13

If Ω_0 is countable and \mathbb{D} is ω -continuous, then $[\widehat{\mathbb{X}}_{\Omega_0} \to \mathbb{D}]$ is also ω -continuous.

Way-Below Relation over $[\hat{\mathbb{X}}_{\Omega_0} \to \mathbb{D}]$

On single-step functions, assuming that $b \neq \bot$, we have:

$$b\chi_{O_{\downarrow W}} \ll b'\chi_{O_{\downarrow W'}} \iff W \subseteq W' \text{ and } b \ll b'.$$

Lemma 14

The way-below relation on step functions of $\hat{\mathbb{B}}$ in (2) can be expressed as:

$$\bigvee_{i \in I} b_i \chi_{O_{\downarrow W_i}} \ll \bigvee_{j \in J} b'_j \chi_{O_{\downarrow W'_j}} \iff \forall i \in I : W_i \subseteq U_i$$

in which
$$U_i \in \Omega_0$$
 satisfies $O_{\downarrow U_i} = \left(\bigvee_{j \in J} b'_j \chi_{O_{\downarrow W'_i}} \right)^{-1} (\uparrow b_i).$

Lemma 14 suggests an alternative approach to obtaining a domain of functions based on *abstract bases* without referring to Stone duality.

Equivalent Construction via Abstract Bases

We define the abstract basis $(\mathbb{B}_{abs}, \triangleleft)$ as follows:

$$\mathbb{B}_{abs} \coloneqq \{f : X \to D \mid f = \bigvee_{i \in I} b_i \chi_{O_i}, \\ I \text{ is finite, } \forall i \in I : O_i \in \Omega_0 \text{ and } b_i \in D_0 \}.$$

As for the binary relation <, considering Lemma 14, we define:

$$\bigvee_{i\in I} b_{i\mathcal{X}O_i} \triangleleft \bigvee_{j\in J} b'_{j\mathcal{X}O'_j} \iff \forall i \in I : O_i \subseteq (\bigvee_{j\in J} b'_{j\mathcal{X}O'_j})^{-1}(\uparrow b_i).$$

Theorem 15

Assume that the domain \mathcal{W} is the rounded ideal completion of $(\mathbb{B}_{abs}, \triangleleft)$. Then $\mathcal{W} \cong [\hat{\mathbb{X}}_{\Omega_0} \to \mathbb{D}]$.

Galois Connection Revisited

Recall from Theorem 2 the following Galois connection in the category $\mathcal{P}o$ of posets and monotonic maps:

$$\begin{bmatrix} \mathbb{X} \to \mathbb{D} \end{bmatrix} \xrightarrow[(\cdot)^*]{\tau} \begin{bmatrix} \hat{\mathbb{X}}_{\Omega_0} \to \mathbb{D} \end{bmatrix} \cong \mathcal{W},$$

in which:

• the map $(\cdot)^*$ is surjective, and $(\cdot)_*$ is injective.

•
$$(\cdot)^* \circ (\cdot)_* = \operatorname{id}_{[\mathbb{X} \to \mathbb{D}]}, \text{ i. e., } \forall f \in [\mathbb{X} \to \mathbb{D}] : (f_*)^* = f.$$

Hence:

- computations take place in the dcpo $[\mathbb{X} \to \mathbb{D}]$.
- computable analysis is done in the (effectively given) domain $[\hat{\mathbb{X}}_{\Omega_0} \rightarrow \mathbb{D}] \cong \mathcal{W}.$
- the left and right adjoints are used for moving between the two function spaces.

Comparison with Type-II Theory of Effectivity (TTE)

- We investigated a computational framework for function spaces over topological spaces that are not core-compact, e.g.
 - Upper limit topology (IVP solving)
 - Infinite-dimensional Banach spaces (PDE solving, functional analysis, etc.)
- In our framework, computability is analyzed in the continuous domain [X̂_{Ω₀} → D].
- In Type-II Theory of Effectivity (TTE) (Weihrauch 2000), computability is analyzed via admissible representations of the function space D^X.

Question 1

In what ways are our framework and TTE related?

In particular, what is the relationship between the topology on D^X induced by an admissible representation, and the Scott topology on [X̂_{Ω₀} → D]?

Applications

Ordinary Differential Equations (ODEs):

- In (Edalat, Farjudian, and Li 2023), we constructed a domain using abstract bases for solution of IVPs with temporal discretization.
- In Theorem 15, we showed that the same domain (up to isomorphism) can be obtained using spectral compactification.

Partial Differential Equations (PDEs):

• We expect spectral compactification to be useful in domain theoretic solution of partial differential equations (PDEs) as well.

Stochastic Processes with Right-Continuous Jumps:

• *lower limit topology* (not core-compact).

Stable Compactification

- Spectral compactification provides another angle on the construction obtained via abstract bases in (Edalat, Farjudian, and Li 2023).
- We believe that the construction based on compactification has some theoretical advantages.
 - Compactification is a central topic in topology.
 - Our construction can be obtained as a special case of Smyth's stable compactification (Smyth 1992) by considering fine quasi-proximities.

Question 2

Are there any concrete applications for non-spectral stable compactification (obtained via non-fine quasi-proximities) in the way that spectral compactification has been useful in IVP solving?

References: I

- [AJ94] Samson Abramsky and Achim Jung. "Domain Theory". In: Handbook of Logic in Computer Science. Ed. by S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum. Vol. 3. Clarendon Press, Oxford, 1994, pp. 1–168.
- F[BE17] Paul Bilokon and Abbas Edalat. "A Domain-Theoretic Approach to Brownian Motion and General Continuous Stochastic Processes". In: *Theoretical Computer Science* 691 (2017), pp. 10–26. doi: 10.1016/j.tcs.2017.07.016.
- [Eda95] Abbas Edalat. "Dynamical Systems, Measures and Fractals via Domain Theory". In: Information and Computation 120.1 (1995), pp. 32–48.

References: II

- F[EEK98] Thomas Erker, Martín Hötzel Escardó, and Klaus Keimel. "The Way-Below Relation of Function Spaces Over Semantic Domains". In: *Topology and its Applications* 89.1 (1998), pp. 61–74. doi: 10.1016/S0166-8641(97)00226-5.
- [EFL23] Abbas Edalat, Amin Farjudian, and Yiran Li. "Recursive Solution of Initial Value Problems with Temporal Discretization". In: *Theoretical Computer Science* (2023), p. 114221. DOI: 10.1016/j.tcs.2023.114221.
- [EP07a] Abbas Edalat and Dirk Pattinson. "A domain-theoretic account of Picard's theorem". In: LMS Journal of Computation and Mathematics 10 (2007), pp. 83–118.
- [EP07b] Abbas Edalat and Dirk Pattinson. "Denotational semantics of hybrid automata". In: The Journal of Logic and Algebraic Programming 73.1 (2007), pp. 3–21.

References: III

- FM23] Amin Farjudian and Eugenio Moggi. "Robustness, Scott continuity, and Computability". In: Mathematical Structures in Computer Science 33.6 (2023), pp. 536–572. doi: 10.1017/S0960129523000233.
- [Mog18] Eugenio Moggi, Amin Farjudian, Adam Duracz, and Walid Taha. "Safe & Robust Reachability Analysis of Hybrid Systems". In: *Theoretical Computer Science* 747 (2018), pp. 75–99.
- [Smy92] Michael B. Smyth. "Stable Compactification I". In: Journal of the London Mathematical Society s2-45.2 (1992), pp. 321–340. DOI: 10.1112/jlms/s2-45.2.321.
- [Wei00] Klaus Weihrauch. Computable Analysis, An Introduction. Springer, 2000.

References: IV

 [Zho23] Can Zhou, Razin A. Shaikh, Yiran Li, and Amin Farjudian. "A domain-theoretic framework for robustness analysis of neural networks". In: Mathematical Structures in Computer Science 33.2 (2023), pp. 68–105. DOI: 10.1017/S0960129523000142.