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Introduction

Close link between topology and the theory of computation

Clearly manifested in domain theory

Domain theory and mathematical analysis:

(Non-algebraic) domains provide a natural computational
framework for mathematical analysis

Initiated by Edalat’s work on dynamical systems (Edalat 1995)
Further developments:

differential equation solving (Edalat and Pattinson 2007a)
stochastic processes (Bilokon and Edalat 2017)
reachability analysis of hybrid systems (Edalat and Pattinson
2007b; Moggi et al. 2018)
robustness analysis of neural networks (Zhou et al. 2023).
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Motivation

Local compactness: a desirable topological property.

What to do in the absence of local compactness?
substitute constructions.

Examples:
robustness analysis of systems with state spaces that are not
(locally) compact (Farjudian and Moggi 2023)
solution of initial value problems (IVPs) with temporal
discretization (Edalat, Farjudian, and Li 2023).
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IVPs

{
y′(t) = f(y(t)),
y(t0) = y0,

(1)

t0 ∈ R, y0 ∈ R, and f : R→ R is a continuous vector field.

Assume that a solution exists over a lifetime of [t0,T ]

We search for a solution of (1) in the space of functions from
[t0,T ] to the interval domain:

IR B {R} ∪
{
[a, b] a, b ∈ R and a ≤ b

}
,

ordered by: ∀X ,Y ∈ IR : X ⊑ Y
△
⇐⇒ X ⊇ Y .
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Temporal Discretization

By integrating both sides of (1): ∀t ∈ [t0,T ], h ∈ [0,T − t]:

y(t + h) = y(t) +
∫ t+h

t
f(y(τ)) dτ.

A general schema:
1 For some k ≥ 1, consider a partition Q = (q0, . . . , qk ) of the

interval [t0,T ].
2 Let Y(t0) B y0.

3 For each j ∈ {0, . . . , k − 1} and h ∈ (0, qj+1 − qj]:

Y(qj + h) B Y(qj) + I(qj , h),

where I(qj , h) is an interval enclosure of
∫ t+h

t f(y(τ)) dτ.
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Fixpoint Formulation (Flawed)

Φ(Y)(x) B
{

y0, if x = t0,
Y(qj) + I(qj , x − qj), if qj < x ≤ qj+1.

t

y

q0 q1 q2 q3 q4

•

◦

•

•

◦

◦
•

◦

•

◦
•

◦

•

◦ •

◦

•

True solution (dark red), Initial enclosure (green)
Upper bound (black): Not upper semi-continuous
Lower bound (blue): Not lower semi-continuous
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Upper Limit Topology

In the function space [[t0,T ]→ IR]:
IR should be equipped with the Scott topology.
What about [t0,T ]?

The Euclidean topology is not appropriate, since the upper
(resp. lower) bounds in the previous figure were not upper
(resp. lower) semi-continuous.

The coarsest topology with respect to which the enclosures
are continuous is the upper limit topology on [t0,T ] with the
collection:

{(a, b] | a, b ∈ R}

of half-open intervals as its base.

But, this topology is not locally compact (Edalat, Farjudian,
and Li 2023, Proposition 4.5).
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Local Compactness

Theorem 1 (Erker, Escardó, and Keimel 1998)

For any topological space X and non-singleton bc-domain D, the
function space ([X→ D],⊑) is a bc-domain ⇐⇒ X is
core-compact.

Also, for sober spaces, core compactness and local
compactness are equivalent.

We work primarily with Sober spaces.

As such, with the upper limit topology, we cannot obtain a
continuous domain of functions.
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Substitute Construction

Basic idea: When X is not core-compact, construct a topological
space X̂ with the following properties:

1 X̂ is core-compact.
2 X can be embedded into X̂ as a dense subspace.
3 The function spaces [X→ D] and [X̂→ D] are related via a

Galois connection.

Then:

The (non-continuous) dcpo [X→ D] can be used for
implementation of algorithms,

analysis of computability can be carried out over the
continuous domain [X̂→ D],

subject to the existence of a suitable effective structure over
[X̂→ D].
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Basic Galois Connection
Assume that ι : X→ Y is a dense embedding of T0 spaces, and D
is a bc-domain. Define:

∀g ∈ [Y→ D] : g∗ B g ◦ ι ,
∀f ∈ [X→ D] : ∀y ∈ Y : f∗(y) B

∨{∧
f(ι−1(U)) y ∈ U ∈ τY

}
.

Theorem 2 (Galois connection)

The maps (·)∗ and (·)∗ form a Galois connection:

[X→ D] [Y→ D],

(·)∗

(·)∗
⊤

in the category Po of posets and monotonic maps. Furthermore:

1 The map (·)∗ is surjective, and (·)∗ is injective.

2 (·)∗ ◦ (·)∗ = id[X→D], i. e., ∀f ∈ [X→ D] : (f∗)∗ = f .

3 The left adjoint (·)∗ is Scott continuous.
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Core-Compactification

Definition 3 (Core-compactification)

A core-compact space X′ is a core-compactification of X
△
⇐⇒

X can be embedded as a dense sub-space of X′.

Examples: Classical compactification methods, e. g.
1 The one-point (Alexandroff) compactification Rn ∪ {∞} of Rn.

Applicable only to locally compact spaces.
2 The Stone-Čech compactification βX of a Tychonoff space X.

Lack of an explicit description even for simple topological
spaces X.
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Viable Base

Definition 4 (Viable base)

Assume that X ≡ (X , τX) is a topological space. We say that
Ω0 ⊆ τX is a viable base for X if:

1 it is closed under finite unions and finite intersections, and
2 it forms a base for the topology τX.

Remarks:
1 Ω0 must contain ∅ = ∪∅ and X = ∩∅.
2 Ω0 is a bounded distributive lattice with

∧
B
⋂

and
∨
B
⋃

.
3 There is always at least one viable base, i. e., Ω0 = τX.
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Bounded Distributive Lattice and Spectral Spaces

Since every viable base is a bounded distributive lattice, we may
refer to the following equivalence of categories to construct a
spectral compactification (Abramsky and Jung 1994, Section 7).:

BDLat op Afal op Spec
Idlop

Kop

⊤

pt

Ω

⊤

Definition 5 (Spectral compactification: X̂Ω0)

Assume that X ≡ (X , τX) is a T0 topological space and Ω0 ⊆ τX is
a viable base of X. By the spectral compactification of X
generated by Ω0 we mean the topological space:

X̂Ω0 ≡ (X̂Ω0 , τ̂) B pt(Idl(Ω0)),

in which τ̂ is the hull-kernel topology.
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Clarification

BDLat op Afal op Spec
Idlop

Kop

⊤

pt

Ω

⊤

BDLat
Objects: bounded distributive lattices
Arrows: bounded lattice homomorphisms

Afal
Objects: algebraic fully (i. e., ⊤ ≪ ⊤) arithmetic lattices
Arrows: frame homomorphisms

Spec
Objects: spectral (i. e., compact, sober, coherent, and

strongly locally compact) spaces
Arrows: spectral maps (i. e., f−1(K) is compact-open for

all compact-open K )
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Strongly Locally Compact Spaces

Among the various features of spectral spaces, the following
stands out:

Definition 6 (Strongly Locally Compact)

We say that Y is a strongly locally compact space if its topology
has a base of compact-open subsets.

Proposition 1

Let Y = (Y , τY) be a topological space. A set Q ⊆ Y is
compact-open if and only if Q is a finite element of the complete
lattice (τY,⊆), i. e., Q ≪ Q.

Lemma 7

A topological space Y = (Y , τY) is strongly locally compact if and
only if (τY,⊆) is an algebraic lattice.
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The pt Functor

BDLat op Afal op Spec
Idlop

Kop

⊤

pt

Ω

⊤

For any complete lattice L ≡ (L ,⊑), by a point of L we mean a
completely prime filter F ⊆ L .

We let pt(L) denote the set of points of L with the so-called
hull-kernel topology:

Open sets Ou B {x ∈ pt(L) | u ∈ x}, where u ranges over all
the elements of L

For any morphism g : L→ K in Afal op
(i. e., a frame

homomorphism g : K→ L) the function pt(g) : pt(L)→ pt(K)
maps every completely prime filter x of L to g−1(x).
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Hull-Kernel Topology τ̂ on X̂Ω0

In the hull-kernel topology τ̂ on X̂Ω0 , every open set is of the form:

OI B {y ∈ X̂Ω0 | I ∈ y},

in which I ranges over Idl(Ω0).

Theorem 8

The set {O↓W | W ∈ Ω0} forms a base for the hull-kernel topology τ̂
on X̂Ω0 .

Corollary 9

When Ω0 is countable, X̂Ω0 is second-countable.
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Rational Upper Limit Topology

Example 10 (rational upper limit topology)

Let R(Q] ≡ (R, τ(Q]) denote the topological space with R as the
carrier set endowed with the rational upper limit topology τ(Q],

with B(Q] B {(a, b] | a, b ∈ Q} as a base.

As for a viable Ω0, an immediate option is τ(Q].

By Theorem 8, it does not lead to a second-countable X̂Ω0 .

Instead, we take Ω0 to consist of all the finite unions of
elements of B(Q].

This is a countable set which can be effectively enumerated.
By Corollary 9, the space X̂Ω0 must also be second-countable.
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Core-Compactification

The rational upper limit topology was used in (Edalat,
Farjudian, and Li 2023) for solution of IVPs with temporal
discretization.

In (Edalat, Farjudian, and Li 2023), the domain [Y→ D] is
constructed by rounded ideal completion of a suitable abstract
basis of step functions.

Here, we work directly on X:

Theorem 11 (Core-compactification)

Assume that X is a T0 topological space. If Ω0 is a viable base of
X, then the spectral space X̂Ω0 is a core-compactification of X.

As we will see (Theorem 15) the two approaches lead to
equivalent outcomes.
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Step Functions (Reminder)
Assume that X ≡ (X , τX) is a topological space, and D ≡ (D,⊑) is
a pointed directed-complete partial order (pointed dcpo), with
bottom element ⊥.

For every open set O ∈ τX, and every element b ∈ D, we
define the single-step function bχO : X → D as follows:

bχO(x) B
{

b , if x ∈ O ,
⊥, if x ∈ X \ O .

Example:
[0, 1] χ(−1,1) : [−2, 2]→ IR

0 1 2−2 −1

1

By a step-function we mean the join of a (consistent) finite set
of single-step functions.

Amin Farjudian, Achim Jung Spectral Compactification - page 20



Continuous Domain of Functions

Theorem 12

Assume that X ≡ (X , τX) is a topological space and Ω0 ⊆ τX is a
viable base of X. Let D ≡ (D,⊑) be a bc-domain and assume that
D0 ⊆ D is a basis for D. Then, [X̂Ω0 → D] is a bc-domain with a
basis B̂ of step-functions of the form:

B̂ =
{∨

i∈I

biχO↓Wi
| I is finite,

{
biχO↓Wi

i ∈ I
}

is consistent,

∀i ∈ I : Wi ∈ Ω0, bi ∈ D0

}
. (2)

Corollary 13

If Ω0 is countable and D is ω-continuous, then [X̂Ω0 → D] is also
ω-continuous.
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Way-Below Relation over [X̂Ω0 → D]

On single-step functions, assuming that b , ⊥, we have:

bχO↓W ≪ b ′χO↓W′ ⇐⇒ W ⊆ W ′ and b ≪ b ′.

Lemma 14

The way-below relation on step functions of B̂ in (2) can be
expressed as:∨

i∈I

biχO↓Wi
≪
∨
j∈J

b ′j χO↓W′j
⇐⇒ ∀i ∈ I : Wi ⊆ Ui ,

in which Ui ∈ Ω0 satisfies O↓Ui =
(∨

j∈J b ′j χO↓W′j

)−1
(↑↑bi).

Lemma 14 suggests an alternative approach to obtaining a domain
of functions based on abstract bases without referring to Stone
duality.
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Equivalent Construction via Abstract Bases

We define the abstract basis (Babs,◁) as follows:

Babs B
{
f : X → D | f =

∨
i∈I

biχOi ,

I is finite,∀i ∈ I : Oi ∈ Ω0 and bi ∈ D0

}
.

As for the binary relation ◁, considering Lemma 14, we define:∨
i∈I

biχOi ◁
∨
j∈J

b ′j χO ′j
⇐⇒ ∀i ∈ I : Oi ⊆ (

∨
j∈J

b ′j χO ′j
)−1(↑↑bi).

Theorem 15

Assume that the domainW is the rounded ideal completion of
(Babs,◁). ThenW � [X̂Ω0 → D].
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Galois Connection Revisited
Recall from Theorem 2 the following Galois connection in the
category Po of posets and monotonic maps:

[X→ D] [X̂Ω0 → D] �W,

(·)∗

(·)∗
⊤

in which:

the map (·)∗ is surjective, and (·)∗ is injective.
(·)∗ ◦ (·)∗ = id[X→D], i. e., ∀f ∈ [X→ D] : (f∗)∗ = f .

Hence:

computations take place in the dcpo [X→ D].
computable analysis is done in the (effectively given) domain
[X̂Ω0 → D] �W.
the left and right adjoints are used for moving between the two
function spaces.

Amin Farjudian, Achim Jung Spectral Compactification - page 24



Comparison with Type-II Theory of Effectivity (TTE)
We investigated a computational framework for function
spaces over topological spaces that are not core-compact,
e. g.

Upper limit topology (IVP solving)
Infinite-dimensional Banach spaces (PDE solving, functional
analysis, etc.)

In our framework, computability is analyzed in the continuous
domain [X̂Ω0 → D].
In Type-II Theory of Effectivity (TTE) (Weihrauch 2000),
computability is analyzed via admissible representations of
the function space DX.

Question 1
In what ways are our framework and TTE related?

In particular, what is the relationship between the topology on DX

induced by an admissible representation, and the Scott topology on
[X̂Ω0 → D]?
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Applications

Ordinary Differential Equations (ODEs):
In (Edalat, Farjudian, and Li 2023), we
constructed a domain using abstract bases for
solution of IVPs with temporal discretization.
In Theorem 15, we showed that the same
domain (up to isomorphism) can be obtained
using spectral compactification.

Partial Differential Equations (PDEs):
We expect spectral compactification to be useful
in domain theoretic solution of partial differential
equations (PDEs) as well.

Stochastic Processes with Right-Continuous Jumps:
lower limit topology (not core-compact).
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Stable Compactification

Spectral compactification provides another angle on the
construction obtained via abstract bases in (Edalat, Farjudian,
and Li 2023).

We believe that the construction based on compactification
has some theoretical advantages.

Compactification is a central topic in topology.
Our construction can be obtained as a special case of Smyth’s
stable compactification (Smyth 1992) by considering fine
quasi-proximities.

Question 2
Are there any concrete applications for non-spectral stable
compactification (obtained via non-fine quasi-proximities) in the
way that spectral compactification has been useful in IVP solving?
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