
1/12

9NAB8 Parametricity via Cohesion 8CAM:

T C.B. Aberlé (she/her) U

June 20, 2024

2/12

9NAB8 On Parametricity

• Reynolds (1983) introduced the concept of
parametricity as a formal specification of the idea
that “type structure is a syntactic discipline for
enforcing levels of abstraction.”

• Idea: in polymorphic λ-calculus/System F, a
polymorphic function of type (e.g.) ∀X.X → X
cannot inspect the types over which it is defined
and so must behave essentially the same for all types
at which it is instantiated.

• Using Reynolds’ technique, can show e.g. that all
closed terms of type ∀X.X → X in System F are
equivalent to the polymorphic identity function.

2/12

9NAB8 On Parametricity

• Reynolds (1983) introduced the concept of
parametricity as a formal specification of the idea
that “type structure is a syntactic discipline for
enforcing levels of abstraction.”

• Idea: in polymorphic λ-calculus/System F, a
polymorphic function of type (e.g.) ∀X.X → X
cannot inspect the types over which it is defined
and so must behave essentially the same for all types
at which it is instantiated.

• Using Reynolds’ technique, can show e.g. that all
closed terms of type ∀X.X → X in System F are
equivalent to the polymorphic identity function.

2/12

9NAB8 On Parametricity

• Reynolds (1983) introduced the concept of
parametricity as a formal specification of the idea
that “type structure is a syntactic discipline for
enforcing levels of abstraction.”

• Idea: in polymorphic λ-calculus/System F, a
polymorphic function of type (e.g.) ∀X.X → X
cannot inspect the types over which it is defined
and so must behave essentially the same for all types
at which it is instantiated.

• Using Reynolds’ technique, can show e.g. that all
closed terms of type ∀X.X → X in System F are
equivalent to the polymorphic identity function.

2/12

9NAB8 On Parametricity

• Reynolds’ original analysis of parametricity was wholly external to
the internal logic of System F.

• The emergence of dependent type theory raises the possibility of an
axiomatic basis for parametricity internal to type theory.

• In recent years, several systems of dependent type theory have
emerged, employing various methods to internalize such
reasoning via parametricity. Some of these have moreover been
applied to significant problems in homotopy type theory, arising
from the complex higher-categorical structure thereof.

• As yet no unifying axiomatic framework for such approaches to
internal parametricity.

• This work constitutes a first step toward such a unifying
framework, based on the category-theoretic concept of cohesion.

2/12

9NAB8 On Parametricity

• Reynolds’ original analysis of parametricity was wholly external to
the internal logic of System F.

• The emergence of dependent type theory raises the possibility of an
axiomatic basis for parametricity internal to type theory.

• In recent years, several systems of dependent type theory have
emerged, employing various methods to internalize such
reasoning via parametricity. Some of these have moreover been
applied to significant problems in homotopy type theory, arising
from the complex higher-categorical structure thereof.

• As yet no unifying axiomatic framework for such approaches to
internal parametricity.

• This work constitutes a first step toward such a unifying
framework, based on the category-theoretic concept of cohesion.

2/12

9NAB8 On Parametricity

• Reynolds’ original analysis of parametricity was wholly external to
the internal logic of System F.

• The emergence of dependent type theory raises the possibility of an
axiomatic basis for parametricity internal to type theory.

• In recent years, several systems of dependent type theory have
emerged, employing various methods to internalize such
reasoning via parametricity. Some of these have moreover been
applied to significant problems in homotopy type theory, arising
from the complex higher-categorical structure thereof.

• As yet no unifying axiomatic framework for such approaches to
internal parametricity.

• This work constitutes a first step toward such a unifying
framework, based on the category-theoretic concept of cohesion.

2/12

9NAB8 On Parametricity

• Reynolds’ original analysis of parametricity was wholly external to
the internal logic of System F.

• The emergence of dependent type theory raises the possibility of an
axiomatic basis for parametricity internal to type theory.

• In recent years, several systems of dependent type theory have
emerged, employing various methods to internalize such
reasoning via parametricity. Some of these have moreover been
applied to significant problems in homotopy type theory, arising
from the complex higher-categorical structure thereof.

• As yet no unifying axiomatic framework for such approaches to
internal parametricity.

• This work constitutes a first step toward such a unifying
framework, based on the category-theoretic concept of cohesion.

2/12

9NAB8 On Parametricity

• Reynolds’ original analysis of parametricity was wholly external to
the internal logic of System F.

• The emergence of dependent type theory raises the possibility of an
axiomatic basis for parametricity internal to type theory.

• In recent years, several systems of dependent type theory have
emerged, employing various methods to internalize such
reasoning via parametricity. Some of these have moreover been
applied to significant problems in homotopy type theory, arising
from the complex higher-categorical structure thereof.

• As yet no unifying axiomatic framework for such approaches to
internal parametricity.

• This work constitutes a first step toward such a unifying
framework, based on the category-theoretic concept of cohesion.

3/12

9NAB8 Axiomatic Cohesion
Lawvere: cohesion as an abstract characterization of when one
category behaves like a category of spaces defined over another:

• A topos E is cohesive over another topos S if there is a string of
four adjoint functors between them as follows:

E

S

Γ ∇ΔΠ ⊣ ⊣ ⊣

where Δ,∇ are fully faithful and Π preserves finite products.
• Induces a string of adjoint endofunctors on E:

∫ ⊣ ♭ ⊣ ♯

with ∫ , ♯ idempotent monads, and ♭ an idempotent comonad.

3/12

9NAB8 Axiomatic Cohesion
Lawvere: cohesion as an abstract characterization of when one
category behaves like a category of spaces defined over another:

• A topos E is cohesive over another topos S if there is a string of
four adjoint functors between them as follows:

E

S

Γ ∇ΔΠ ⊣ ⊣ ⊣

where Δ,∇ are fully faithful and Π preserves finite products.

• Induces a string of adjoint endofunctors on E:

∫ ⊣ ♭ ⊣ ♯

with ∫ , ♯ idempotent monads, and ♭ an idempotent comonad.

3/12

9NAB8 Axiomatic Cohesion
Lawvere: cohesion as an abstract characterization of when one
category behaves like a category of spaces defined over another:

• A topos E is cohesive over another topos S if there is a string of
four adjoint functors between them as follows:

E

S

Γ ∇ΔΠ ⊣ ⊣ ⊣

where Δ,∇ are fully faithful and Π preserves finite products.
• Induces a string of adjoint endofunctors on E:

∫ ⊣ ♭ ⊣ ♯

with ∫ , ♯ idempotent monads, and ♭ an idempotent comonad.

4/12

9NAB8 Example: Reflexive Graphs

The category of reflexive graphs RGph is cohesive over the category of
sets Set.

• Many classical models of parametricity are based upon semantic
interpretations of type structure in terms of reflexive graphs. This
is no accident, due to the cohesive structure of reflexive graphs.

• More generally, for any base topos S, the corresponding topos
RGph(S) of internal reflexive graphs in S is cohesive over S.
Hence the internal language of reflexive graphs can be used to
derive parametricity results for any topos.

• In fact, this same setup of cohesion is interpretable, mutatis
mutandis, in the case where E ,S are not (1-)topoi, but rather
∞-topoi, i.e. models of homotopy type theory (HoTT).

• We can thus use the language of HoTT – suitably extended with
cohesive modalities – to work synthetically with the structure of
such a cohesive∞-topos.

4/12

9NAB8 Example: Reflexive Graphs
Γ maps a reflexive graph G to its set of vertices, Πmaps G to its set of
weakly connected components.

G

ΓG

ΠG

Γ

Π

• Many classical models of parametricity are based upon semantic
interpretations of type structure in terms of reflexive graphs. This
is no accident, due to the cohesive structure of reflexive graphs.

• More generally, for any base topos S, the corresponding topos
RGph(S) of internal reflexive graphs in S is cohesive over S.
Hence the internal language of reflexive graphs can be used to
derive parametricity results for any topos.

• In fact, this same setup of cohesion is interpretable, mutatis
mutandis, in the case where E ,S are not (1-)topoi, but rather
∞-topoi, i.e. models of homotopy type theory (HoTT).

• We can thus use the language of HoTT – suitably extended with
cohesive modalities – to work synthetically with the structure of
such a cohesive∞-topos.

4/12

9NAB8 Example: Reflexive Graphs
Δmaps a set V to the discrete graph with vertex set V, and ∇ maps V to
the codiscrete (i.e. complete) graph on V.

V
ΔV

∇V

Δ

∇

• Many classical models of parametricity are based upon semantic
interpretations of type structure in terms of reflexive graphs. This
is no accident, due to the cohesive structure of reflexive graphs.

• More generally, for any base topos S, the corresponding topos
RGph(S) of internal reflexive graphs in S is cohesive over S.
Hence the internal language of reflexive graphs can be used to
derive parametricity results for any topos.

• In fact, this same setup of cohesion is interpretable, mutatis
mutandis, in the case where E ,S are not (1-)topoi, but rather
∞-topoi, i.e. models of homotopy type theory (HoTT).

• We can thus use the language of HoTT – suitably extended with
cohesive modalities – to work synthetically with the structure of
such a cohesive∞-topos.

4/12

9NAB8 Example: Reflexive Graphs

• Many classical models of parametricity are based upon semantic
interpretations of type structure in terms of reflexive graphs. This
is no accident, due to the cohesive structure of reflexive graphs.

• More generally, for any base topos S, the corresponding topos
RGph(S) of internal reflexive graphs in S is cohesive over S.
Hence the internal language of reflexive graphs can be used to
derive parametricity results for any topos.

• In fact, this same setup of cohesion is interpretable, mutatis
mutandis, in the case where E ,S are not (1-)topoi, but rather
∞-topoi, i.e. models of homotopy type theory (HoTT).

• We can thus use the language of HoTT – suitably extended with
cohesive modalities – to work synthetically with the structure of
such a cohesive∞-topos.

4/12

9NAB8 Example: Reflexive Graphs

• Many classical models of parametricity are based upon semantic
interpretations of type structure in terms of reflexive graphs. This
is no accident, due to the cohesive structure of reflexive graphs.

• More generally, for any base topos S, the corresponding topos
RGph(S) of internal reflexive graphs in S is cohesive over S.
Hence the internal language of reflexive graphs can be used to
derive parametricity results for any topos.

• In fact, this same setup of cohesion is interpretable, mutatis
mutandis, in the case where E ,S are not (1-)topoi, but rather
∞-topoi, i.e. models of homotopy type theory (HoTT).

• We can thus use the language of HoTT – suitably extended with
cohesive modalities – to work synthetically with the structure of
such a cohesive∞-topos.

4/12

9NAB8 Example: Reflexive Graphs

• Many classical models of parametricity are based upon semantic
interpretations of type structure in terms of reflexive graphs. This
is no accident, due to the cohesive structure of reflexive graphs.

• More generally, for any base topos S, the corresponding topos
RGph(S) of internal reflexive graphs in S is cohesive over S.
Hence the internal language of reflexive graphs can be used to
derive parametricity results for any topos.

• In fact, this same setup of cohesion is interpretable, mutatis
mutandis, in the case where E ,S are not (1-)topoi, but rather
∞-topoi, i.e. models of homotopy type theory (HoTT).

• We can thus use the language of HoTT – suitably extended with
cohesive modalities – to work synthetically with the structure of
such a cohesive∞-topos.

4/12

9NAB8 Example: Reflexive Graphs

• Many classical models of parametricity are based upon semantic
interpretations of type structure in terms of reflexive graphs. This
is no accident, due to the cohesive structure of reflexive graphs.

• More generally, for any base topos S, the corresponding topos
RGph(S) of internal reflexive graphs in S is cohesive over S.
Hence the internal language of reflexive graphs can be used to
derive parametricity results for any topos.

• In fact, this same setup of cohesion is interpretable, mutatis
mutandis, in the case where E ,S are not (1-)topoi, but rather
∞-topoi, i.e. models of homotopy type theory (HoTT).

• We can thus use the language of HoTT – suitably extended with
cohesive modalities – to work synthetically with the structure of
such a cohesive∞-topos.

5/12

9NAB8 Type-Theoretic Cohesion

Following Shulman’s (2018) formulation of cohesive HoTT:

5/12

9NAB8 Type-Theoretic Cohesion

Following Shulman’s (2018) formulation of cohesive HoTT:
Problem: the ♭modality is not well-defined in arbitrary contexts, but
only in those consisting entirely of discrete variables.

5/12

9NAB8 Type-Theoretic Cohesion

Following Shulman’s (2018) formulation of cohesive HoTT:
Problem: the ♭modality is not well-defined in arbitrary contexts, but
only in those consisting entirely of discrete variables.
Solution: modify the structure of contexts to keep track of which
variables are discrete.

5/12

9NAB8 Type-Theoretic Cohesion

Contexts now of the form Δ | Ξ where Δ consists of discrete variables,
while Ξ consists of ordinary variables. The type of an ordinary variable
may depend on both ordinary and discrete variables, but the type of a
discrete variable can only depend upon other discrete variables.

Δ | Ξ Ctx Δ | Ξ ⊢ S Type
Δ | Ξ, 𝑥 : S Ctx

Δ | Ξ Ctx Δ | − ⊢ S Type
Δ, 𝑥 : S | Ξ Ctx

5/12

9NAB8 Type-Theoretic Cohesion

Rules for ♭ are then essentially those of a Pfenning-Davies-style modal
necessity operator:

Δ | − ⊢ S Type
Δ | Ξ ⊢ ♭S Type

Δ | − ⊢ 𝑠 : S

Δ | Ξ ⊢ 𝑠♭ : ♭S

Δ | Ξ ⊢ 𝑠 : ♭S Δ | Ξ, 𝑧 : ♭S ⊢ R Type Δ, 𝑥 : S | Ξ ⊢ 𝑟 : R[𝑥♭/𝑧]
Δ | Ξ ⊢ let 𝑥♭ = 𝑠 in 𝑟 : R[𝑠/𝑧]

let 𝑥♭ = 𝑠♭ in 𝑟 ≡ 𝑟 [𝑠/𝑥]

5/12

9NAB8 Type-Theoretic Cohesion

Rules for ♭ are then essentially those of a Pfenning-Davies-style modal
necessity operator:

Δ | − ⊢ S Type
Δ | Ξ ⊢ ♭S Type

Δ | − ⊢ 𝑠 : S

Δ | Ξ ⊢ 𝑠♭ : ♭S

Δ | Ξ ⊢ 𝑠 : ♭S Δ | Ξ, 𝑧 : ♭S ⊢ R Type Δ, 𝑥 : S | Ξ ⊢ 𝑟 : R[𝑥♭/𝑧]
Δ | Ξ ⊢ let 𝑥♭ = 𝑠 in 𝑟 : R[𝑠/𝑧]

let 𝑥♭ = 𝑠♭ in 𝑟 ≡ 𝑟 [𝑠/𝑥]

For any type S, we have ϵS : ♭S → S given by

ϵ (𝑠) := let 𝑥♭ = 𝑠 in 𝑥

S is discrete if ϵS is an equivalence.

6/12

9NAB8 Sufficient Cohesion

How is this all related to parametricity?

• Cohesion lets us ask what is the shape of an abstract relation
between elements of a type.

• In particular, there should be some type I that classifies this shape,
in the sense that maps I → S correspond to abstract relations – or,
to use a more geometric term, paths – between elements of S.

• In RGph, the role of such a path classifier is played by the walking
edge graph I := {0 → 1}

• Two key properties of I:

• It is strictly bipointed, i.e. 0 ≠ 1 ∈ I
• It is connected, i.e. ∫ I ≃ 1

• The existence of an object with these two properties is equivalent
to what Lawvere called sufficient cohesion.

6/12

9NAB8 Sufficient Cohesion

How is this all related to parametricity?
• Cohesion lets us ask what is the shape of an abstract relation
between elements of a type.

• In particular, there should be some type I that classifies this shape,
in the sense that maps I → S correspond to abstract relations – or,
to use a more geometric term, paths – between elements of S.

• In RGph, the role of such a path classifier is played by the walking
edge graph I := {0 → 1}

• Two key properties of I:

• It is strictly bipointed, i.e. 0 ≠ 1 ∈ I
• It is connected, i.e. ∫ I ≃ 1

• The existence of an object with these two properties is equivalent
to what Lawvere called sufficient cohesion.

6/12

9NAB8 Sufficient Cohesion

How is this all related to parametricity?
• Cohesion lets us ask what is the shape of an abstract relation
between elements of a type.

• In particular, there should be some type I that classifies this shape,
in the sense that maps I → S correspond to abstract relations – or,
to use a more geometric term, paths – between elements of S.

• In RGph, the role of such a path classifier is played by the walking
edge graph I := {0 → 1}

• Two key properties of I:

• It is strictly bipointed, i.e. 0 ≠ 1 ∈ I
• It is connected, i.e. ∫ I ≃ 1

• The existence of an object with these two properties is equivalent
to what Lawvere called sufficient cohesion.

6/12

9NAB8 Sufficient Cohesion

How is this all related to parametricity?
• Cohesion lets us ask what is the shape of an abstract relation
between elements of a type.

• In particular, there should be some type I that classifies this shape,
in the sense that maps I → S correspond to abstract relations – or,
to use a more geometric term, paths – between elements of S.

• In RGph, the role of such a path classifier is played by the walking
edge graph I := {0 → 1}

• Two key properties of I:

• It is strictly bipointed, i.e. 0 ≠ 1 ∈ I
• It is connected, i.e. ∫ I ≃ 1

• The existence of an object with these two properties is equivalent
to what Lawvere called sufficient cohesion.

6/12

9NAB8 Sufficient Cohesion

How is this all related to parametricity?
• Cohesion lets us ask what is the shape of an abstract relation
between elements of a type.

• In particular, there should be some type I that classifies this shape,
in the sense that maps I → S correspond to abstract relations – or,
to use a more geometric term, paths – between elements of S.

• In RGph, the role of such a path classifier is played by the walking
edge graph I := {0 → 1}

• Two key properties of I:

• It is strictly bipointed, i.e. 0 ≠ 1 ∈ I
• It is connected, i.e. ∫ I ≃ 1

• The existence of an object with these two properties is equivalent
to what Lawvere called sufficient cohesion.

6/12

9NAB8 Sufficient Cohesion

How is this all related to parametricity?
• Cohesion lets us ask what is the shape of an abstract relation
between elements of a type.

• In particular, there should be some type I that classifies this shape,
in the sense that maps I → S correspond to abstract relations – or,
to use a more geometric term, paths – between elements of S.

• In RGph, the role of such a path classifier is played by the walking
edge graph I := {0 → 1}

• Two key properties of I:
• It is strictly bipointed, i.e. 0 ≠ 1 ∈ I

• It is connected, i.e. ∫ I ≃ 1
• The existence of an object with these two properties is equivalent
to what Lawvere called sufficient cohesion.

6/12

9NAB8 Sufficient Cohesion

How is this all related to parametricity?
• Cohesion lets us ask what is the shape of an abstract relation
between elements of a type.

• In particular, there should be some type I that classifies this shape,
in the sense that maps I → S correspond to abstract relations – or,
to use a more geometric term, paths – between elements of S.

• In RGph, the role of such a path classifier is played by the walking
edge graph I := {0 → 1}

• Two key properties of I:
• It is strictly bipointed, i.e. 0 ≠ 1 ∈ I
• It is connected, i.e. ∫ I ≃ 1

• The existence of an object with these two properties is equivalent
to what Lawvere called sufficient cohesion.

6/12

9NAB8 Sufficient Cohesion

How is this all related to parametricity?
• Cohesion lets us ask what is the shape of an abstract relation
between elements of a type.

• In particular, there should be some type I that classifies this shape,
in the sense that maps I → S correspond to abstract relations – or,
to use a more geometric term, paths – between elements of S.

• In RGph, the role of such a path classifier is played by the walking
edge graph I := {0 → 1}

• Two key properties of I:
• It is strictly bipointed, i.e. 0 ≠ 1 ∈ I
• It is connected, i.e. ∫ I ≃ 1

• The existence of an object with these two properties is equivalent
to what Lawvere called sufficient cohesion.

6/12

9NAB8 Sufficient Cohesion

Lemma: in (the internal language of) a sufficiently cohesive topos, all
paths in discrete types are constant.

6/12

9NAB8 Sufficient Cohesion

Lemma: in (the internal language of) a sufficiently cohesive topos, all
paths in discrete types are constant.
Proof: let S be a discrete type. A path in S is a function 𝑓 : I → S. Since S
is discrete, 𝑓 factors as

I
𝑓♭−→ ♭S

ϵS−→ S

for some 𝑓♭ : I → ♭S.

6/12

9NAB8 Sufficient Cohesion

Lemma: in (the internal language of) a sufficiently cohesive topos, all
paths in discrete types are constant.
Proof: let S be a discrete type. A path in S is a function 𝑓 : I → S. Since S
is discrete, 𝑓 factors as

I
𝑓♭−→ ♭S

ϵS−→ S

for some 𝑓♭ : I → ♭S. But then since ∫ ⊣ ♭, it follows that there is
𝑓∫ : ∫ I → S such that

I ∫ I

♭S S

ηI

𝑓♭ 𝑓 𝑓∫

ϵS

where η is the unit for the monad ∫ . Then since I is connected, ∫ I ≃ 1
and so 𝑓 factors through 1, i.e. 𝑓 is constant.

7/12

9NAB8 Path Types

• To represent such paths in type theory, we may borrow some ideas
from cubical type theory and simplicial type theory.

• We postulate an abstract interval type I with two points 0, 1 : I.
• Given a family of types 𝑖 : I ⊢ S(𝑖) Type, a path from 𝑠0 : S(0) to

𝑠1 : S(1) is a dependent function

𝑓 :
∏
𝑖:I

S(𝑖) such that 𝑓0 ≡ 𝑠0 and 𝑓1 ≡ 𝑠1

• Write Path𝑖.S(𝑖) (𝑠0, 𝑠1) for the type of such paths.
• A type S is path-discrete if for all 𝑠0, 𝑠1 : S, the canonical map

𝑠0 =S 𝑠1 → Path𝑖.S(𝑠0, 𝑠1) is an equivalence.
• The above lemma says that, if a type is discrete, then it is
path-discrete.

7/12

9NAB8 Path Types

• To represent such paths in type theory, we may borrow some ideas
from cubical type theory and simplicial type theory.

• We postulate an abstract interval type I with two points 0, 1 : I.

• Given a family of types 𝑖 : I ⊢ S(𝑖) Type, a path from 𝑠0 : S(0) to
𝑠1 : S(1) is a dependent function

𝑓 :
∏
𝑖:I

S(𝑖) such that 𝑓0 ≡ 𝑠0 and 𝑓1 ≡ 𝑠1

• Write Path𝑖.S(𝑖) (𝑠0, 𝑠1) for the type of such paths.
• A type S is path-discrete if for all 𝑠0, 𝑠1 : S, the canonical map

𝑠0 =S 𝑠1 → Path𝑖.S(𝑠0, 𝑠1) is an equivalence.
• The above lemma says that, if a type is discrete, then it is
path-discrete.

7/12

9NAB8 Path Types

• To represent such paths in type theory, we may borrow some ideas
from cubical type theory and simplicial type theory.

• We postulate an abstract interval type I with two points 0, 1 : I.
• Given a family of types 𝑖 : I ⊢ S(𝑖) Type, a path from 𝑠0 : S(0) to

𝑠1 : S(1) is a dependent function

𝑓 :
∏
𝑖:I

S(𝑖) such that 𝑓0 ≡ 𝑠0 and 𝑓1 ≡ 𝑠1

• Write Path𝑖.S(𝑖) (𝑠0, 𝑠1) for the type of such paths.
• A type S is path-discrete if for all 𝑠0, 𝑠1 : S, the canonical map

𝑠0 =S 𝑠1 → Path𝑖.S(𝑠0, 𝑠1) is an equivalence.
• The above lemma says that, if a type is discrete, then it is
path-discrete.

7/12

9NAB8 Path Types

• To represent such paths in type theory, we may borrow some ideas
from cubical type theory and simplicial type theory.

• We postulate an abstract interval type I with two points 0, 1 : I.
• Given a family of types 𝑖 : I ⊢ S(𝑖) Type, a path from 𝑠0 : S(0) to

𝑠1 : S(1) is a dependent function

𝑓 :
∏
𝑖:I

S(𝑖) such that 𝑓0 ≡ 𝑠0 and 𝑓1 ≡ 𝑠1

• Write Path𝑖.S(𝑖) (𝑠0, 𝑠1) for the type of such paths.

• A type S is path-discrete if for all 𝑠0, 𝑠1 : S, the canonical map
𝑠0 =S 𝑠1 → Path𝑖.S(𝑠0, 𝑠1) is an equivalence.

• The above lemma says that, if a type is discrete, then it is
path-discrete.

7/12

9NAB8 Path Types

• To represent such paths in type theory, we may borrow some ideas
from cubical type theory and simplicial type theory.

• We postulate an abstract interval type I with two points 0, 1 : I.
• Given a family of types 𝑖 : I ⊢ S(𝑖) Type, a path from 𝑠0 : S(0) to

𝑠1 : S(1) is a dependent function

𝑓 :
∏
𝑖:I

S(𝑖) such that 𝑓0 ≡ 𝑠0 and 𝑓1 ≡ 𝑠1

• Write Path𝑖.S(𝑖) (𝑠0, 𝑠1) for the type of such paths.
• A type S is path-discrete if for all 𝑠0, 𝑠1 : S, the canonical map

𝑠0 =S 𝑠1 → Path𝑖.S(𝑠0, 𝑠1) is an equivalence.

• The above lemma says that, if a type is discrete, then it is
path-discrete.

7/12

9NAB8 Path Types

• To represent such paths in type theory, we may borrow some ideas
from cubical type theory and simplicial type theory.

• We postulate an abstract interval type I with two points 0, 1 : I.
• Given a family of types 𝑖 : I ⊢ S(𝑖) Type, a path from 𝑠0 : S(0) to

𝑠1 : S(1) is a dependent function

𝑓 :
∏
𝑖:I

S(𝑖) such that 𝑓0 ≡ 𝑠0 and 𝑓1 ≡ 𝑠1

• Write Path𝑖.S(𝑖) (𝑠0, 𝑠1) for the type of such paths.
• A type S is path-discrete if for all 𝑠0, 𝑠1 : S, the canonical map

𝑠0 =S 𝑠1 → Path𝑖.S(𝑠0, 𝑠1) is an equivalence.
• The above lemma says that, if a type is discrete, then it is
path-discrete.

8/12

9NAB8 Graph Types
To make full use of the structure of sufficient cohesion, we also need
some way to make use of the fact that I is strictly bipointed. For this
purpose, we introduce graph types.

• Given S Type, a type family 𝑥 : S ⊢ T(𝑥) Type, and an element
𝑖 : I, the graph type Gph1𝑖𝑥:ST(𝑥) is the type of dependent pairs
whose second element exists only under the assumption that
𝑖 ≡ 1, i.e.

(𝑠, 𝑡) such that 𝑠 : S and 𝑖 ≡ 1 ⊢ 𝑡 : T(𝑠)

• In the case where 𝑖 ≡ 0, we therefore have Gph1𝑖𝑥:ST(𝑥) ≃ S, and
we strengthen this equivalence into the following judgmental
equalities:

Gph10𝑥:ST(𝑥) ≡ S
𝑝 : Gph10𝑥:ST(𝑥)

π1 (𝑝) ≡ 𝑝

(𝑠, 𝑡) : Gph10𝑥:ST(𝑥)
(𝑠, 𝑡) ≡ 𝑠

8/12

9NAB8 Graph Types
To make full use of the structure of sufficient cohesion, we also need
some way to make use of the fact that I is strictly bipointed. For this
purpose, we introduce graph types.

• Given S Type, a type family 𝑥 : S ⊢ T(𝑥) Type, and an element
𝑖 : I, the graph type Gph1𝑖𝑥:ST(𝑥) is the type of dependent pairs
whose second element exists only under the assumption that
𝑖 ≡ 1, i.e.

(𝑠, 𝑡) such that 𝑠 : S and 𝑖 ≡ 1 ⊢ 𝑡 : T(𝑠)

• In the case where 𝑖 ≡ 0, we therefore have Gph1𝑖𝑥:ST(𝑥) ≃ S, and
we strengthen this equivalence into the following judgmental
equalities:

Gph10𝑥:ST(𝑥) ≡ S
𝑝 : Gph10𝑥:ST(𝑥)

π1 (𝑝) ≡ 𝑝

(𝑠, 𝑡) : Gph10𝑥:ST(𝑥)
(𝑠, 𝑡) ≡ 𝑠

8/12

9NAB8 Graph Types
To make full use of the structure of sufficient cohesion, we also need
some way to make use of the fact that I is strictly bipointed. For this
purpose, we introduce graph types.

• Given S Type, a type family 𝑥 : S ⊢ T(𝑥) Type, and an element
𝑖 : I, the graph type Gph1𝑖𝑥:ST(𝑥) is the type of dependent pairs
whose second element exists only under the assumption that
𝑖 ≡ 1, i.e.

(𝑠, 𝑡) such that 𝑠 : S and 𝑖 ≡ 1 ⊢ 𝑡 : T(𝑠)

• In the case where 𝑖 ≡ 0, we therefore have Gph1𝑖𝑥:ST(𝑥) ≃ S, and
we strengthen this equivalence into the following judgmental
equalities:

Gph10𝑥:ST(𝑥) ≡ S
𝑝 : Gph10𝑥:ST(𝑥)

π1 (𝑝) ≡ 𝑝

(𝑠, 𝑡) : Gph10𝑥:ST(𝑥)
(𝑠, 𝑡) ≡ 𝑠

9/12

9NAB8 The Polymorphic Identity

Lemma: given α :
∏

X:Type X → X, for any path-discrete type A
together with 𝑥 : A ⊢ B(𝑥) Type and 𝑎 : A with 𝑏 : B(𝑎), the type
B(α A 𝑎) is inhabited.
Three steps to prove parametricity:

1 Define a function step1 :
∏

𝑖:I Gph1
𝑖
𝑥:AB(𝑥) such that

step1(0) ≡ α A 𝑎

step1 := λ𝑖 : I. α (Gph1𝑖𝑥:AB(𝑥)) (𝑎, 𝑏)

2 Taking the second projection of step1(1) gives
step2 : B(π1(step1(1)))

3 Taking the first projection of step1(𝑖) for 𝑖 : I gives a path
step3 : Path𝑖.A(α A 𝑎, π1(step1(1))), and since A is path-discrete,
this yields an identity α A 𝑎 =A π1(step1(1)), along which we can
transport step2 to obtain an inhabitant of B(α A 𝑎). □

9/12

9NAB8 The Polymorphic Identity

Lemma: given α :
∏

X:Type X → X, for any path-discrete type A
together with 𝑥 : A ⊢ B(𝑥) Type and 𝑎 : A with 𝑏 : B(𝑎), the type
B(α A 𝑎) is inhabited.
Three steps to prove parametricity:

1 Define a function step1 :
∏

𝑖:I Gph1
𝑖
𝑥:AB(𝑥) such that

step1(0) ≡ α A 𝑎

step1 := λ𝑖 : I. α (Gph1𝑖𝑥:AB(𝑥)) (𝑎, 𝑏)

2 Taking the second projection of step1(1) gives
step2 : B(π1(step1(1)))

3 Taking the first projection of step1(𝑖) for 𝑖 : I gives a path
step3 : Path𝑖.A(α A 𝑎, π1(step1(1))), and since A is path-discrete,
this yields an identity α A 𝑎 =A π1(step1(1)), along which we can
transport step2 to obtain an inhabitant of B(α A 𝑎). □

9/12

9NAB8 The Polymorphic Identity

Lemma: given α :
∏

X:Type X → X, for any path-discrete type A
together with 𝑥 : A ⊢ B(𝑥) Type and 𝑎 : A with 𝑏 : B(𝑎), the type
B(α A 𝑎) is inhabited.
Three steps to prove parametricity:

1 Define a function step1 :
∏

𝑖:I Gph1
𝑖
𝑥:AB(𝑥) such that

step1(0) ≡ α A 𝑎

step1 := λ𝑖 : I. α (Gph1𝑖𝑥:AB(𝑥)) (𝑎, 𝑏)

2 Taking the second projection of step1(1) gives
step2 : B(π1(step1(1)))

3 Taking the first projection of step1(𝑖) for 𝑖 : I gives a path
step3 : Path𝑖.A(α A 𝑎, π1(step1(1))), and since A is path-discrete,
this yields an identity α A 𝑎 =A π1(step1(1)), along which we can
transport step2 to obtain an inhabitant of B(α A 𝑎). □

10/12

9NAB8 Applications in HoTT

• This same technique can be used to derive induction principles for
inductive and higher inductive types from their recursors alone.
The derivation is very straightforward, following essentially the
same three steps to prove parametricity as above.

• Previously, induction principles could be derived from recursors
using the Awodey-Frey-Speight strategy of restricting to instances
of recursors satisfying certain higher-categorical coherence
conditions. However, these conditions quickly grow in complexity
and become intractable to work with. This is essentially an
instance of the coherence problem in HoTT.

• The approach to this problem via internal parametricity in
cohesive HoTT suffers none of these defects, and easily handles
examples such as the circle, for which the analogous
Awodey-Frey-Speight encoding is already quite complex.

10/12

9NAB8 Applications in HoTT

• This same technique can be used to derive induction principles for
inductive and higher inductive types from their recursors alone.
The derivation is very straightforward, following essentially the
same three steps to prove parametricity as above.

• Previously, induction principles could be derived from recursors
using the Awodey-Frey-Speight strategy of restricting to instances
of recursors satisfying certain higher-categorical coherence
conditions. However, these conditions quickly grow in complexity
and become intractable to work with. This is essentially an
instance of the coherence problem in HoTT.

• The approach to this problem via internal parametricity in
cohesive HoTT suffers none of these defects, and easily handles
examples such as the circle, for which the analogous
Awodey-Frey-Speight encoding is already quite complex.

10/12

9NAB8 Applications in HoTT

• This same technique can be used to derive induction principles for
inductive and higher inductive types from their recursors alone.
The derivation is very straightforward, following essentially the
same three steps to prove parametricity as above.

• Previously, induction principles could be derived from recursors
using the Awodey-Frey-Speight strategy of restricting to instances
of recursors satisfying certain higher-categorical coherence
conditions. However, these conditions quickly grow in complexity
and become intractable to work with. This is essentially an
instance of the coherence problem in HoTT.

• The approach to this problem via internal parametricity in
cohesive HoTT suffers none of these defects, and easily handles
examples such as the circle, for which the analogous
Awodey-Frey-Speight encoding is already quite complex.

11/12

9NAB8 ...and Beyond?
• These results have all been formalized in Agda using the
––cohesion flag.

• anyone who’s interested can import the code and start using it to
prove parametricity theorems in Agda today:
https://github.com/cbaberle/Parametricity-via-Cohesion

• In this talk we have mainly considered unary parametricity, but
this approach handles binary and 𝑛-ary parametricity just as well.

• Jason Reed has a nice formalization of K-ary parametricity for any
type K with decidable equality:
https://github.com/jcreedcmu/aberle-parametricity-
exercise/blob/main/ExerciseN.agda

• Hope that the account of parametricity via cohesion – or some
suitable generalization thereof – can serve as a unifying
framework for these and other applications of internal
parametricity in dependent type theory.

• Further work: internal parametricity for linear programs (in some
form of linear dependent type theory?)

11/12

9NAB8 ...and Beyond?
• These results have all been formalized in Agda using the
––cohesion flag.

• anyone who’s interested can import the code and start using it to
prove parametricity theorems in Agda today:
https://github.com/cbaberle/Parametricity-via-Cohesion

• In this talk we have mainly considered unary parametricity, but
this approach handles binary and 𝑛-ary parametricity just as well.

• Jason Reed has a nice formalization of K-ary parametricity for any
type K with decidable equality:
https://github.com/jcreedcmu/aberle-parametricity-
exercise/blob/main/ExerciseN.agda

• Hope that the account of parametricity via cohesion – or some
suitable generalization thereof – can serve as a unifying
framework for these and other applications of internal
parametricity in dependent type theory.

• Further work: internal parametricity for linear programs (in some
form of linear dependent type theory?)

11/12

9NAB8 ...and Beyond?
• These results have all been formalized in Agda using the
––cohesion flag.

• anyone who’s interested can import the code and start using it to
prove parametricity theorems in Agda today:
https://github.com/cbaberle/Parametricity-via-Cohesion

• In this talk we have mainly considered unary parametricity, but
this approach handles binary and 𝑛-ary parametricity just as well.

• Jason Reed has a nice formalization of K-ary parametricity for any
type K with decidable equality:
https://github.com/jcreedcmu/aberle-parametricity-
exercise/blob/main/ExerciseN.agda

• Hope that the account of parametricity via cohesion – or some
suitable generalization thereof – can serve as a unifying
framework for these and other applications of internal
parametricity in dependent type theory.

• Further work: internal parametricity for linear programs (in some
form of linear dependent type theory?)

11/12

9NAB8 ...and Beyond?
• These results have all been formalized in Agda using the
––cohesion flag.

• anyone who’s interested can import the code and start using it to
prove parametricity theorems in Agda today:
https://github.com/cbaberle/Parametricity-via-Cohesion

• In this talk we have mainly considered unary parametricity, but
this approach handles binary and 𝑛-ary parametricity just as well.

• Jason Reed has a nice formalization of K-ary parametricity for any
type K with decidable equality:
https://github.com/jcreedcmu/aberle-parametricity-
exercise/blob/main/ExerciseN.agda

• Hope that the account of parametricity via cohesion – or some
suitable generalization thereof – can serve as a unifying
framework for these and other applications of internal
parametricity in dependent type theory.

• Further work: internal parametricity for linear programs (in some
form of linear dependent type theory?)

11/12

9NAB8 ...and Beyond?
• These results have all been formalized in Agda using the
––cohesion flag.

• anyone who’s interested can import the code and start using it to
prove parametricity theorems in Agda today:
https://github.com/cbaberle/Parametricity-via-Cohesion

• In this talk we have mainly considered unary parametricity, but
this approach handles binary and 𝑛-ary parametricity just as well.

• Jason Reed has a nice formalization of K-ary parametricity for any
type K with decidable equality:
https://github.com/jcreedcmu/aberle-parametricity-
exercise/blob/main/ExerciseN.agda

• Hope that the account of parametricity via cohesion – or some
suitable generalization thereof – can serve as a unifying
framework for these and other applications of internal
parametricity in dependent type theory.

• Further work: internal parametricity for linear programs (in some
form of linear dependent type theory?)

12/12

9NAB8 Thank you! 8CAM:

