► Cohesion X ?? S ~

🕼 C.B. Aberlé (she/her) 🦈

June 20, 2024

ふぞき On Parametricity

• Reynolds (1983) introduced the concept of *parametricity* as a formal specification of the idea that "**type structure is a syntactic discipline for enforcing levels of abstraction.**"

ふぞき On Parametricity

- Reynolds (1983) introduced the concept of *parametricity* as a formal specification of the idea that "**type structure is a syntactic discipline for enforcing levels of abstraction.**"
- Idea: in polymorphic λ-calculus/System F, a polymorphic function of type (e.g.) ∀X.X → X cannot inspect the types over which it is defined and so must behave essentially the same for all types at which it is instantiated.

ふごそび On Parametricity

- Reynolds (1983) introduced the concept of *parametricity* as a formal specification of the idea that "**type structure is a syntactic discipline for enforcing levels of abstraction.**"
- Idea: in polymorphic λ-calculus/System F, a polymorphic function of type (e.g.) ∀X.X → X cannot inspect the types over which it is defined and so must behave essentially the same for all types at which it is instantiated.
- Using Reynolds' technique, can show e.g. that all closed terms of type ∀X.X → X in System F are equivalent to the polymorphic identity function.

ふぞうジズ On Parametricity

• Reynolds' original analysis of parametricity was wholly *external* to the internal logic of System F.

- Reynolds' original analysis of parametricity was wholly *external* to the internal logic of System F.
- The emergence of *dependent type theory* raises the possibility of an axiomatic basis for parametricity *internal* to type theory.

- Reynolds' original analysis of parametricity was wholly *external* to the internal logic of System F.
- The emergence of *dependent type theory* raises the possibility of an axiomatic basis for parametricity *internal* to type theory.
- In recent years, several systems of dependent type theory have emerged, employing various methods to internalize such reasoning via parametricity. Some of these have moreover been applied to significant problems in *homotopy type theory*, arising from the complex higher-categorical structure thereof.

- Reynolds' original analysis of parametricity was wholly *external* to the internal logic of System F.
- The emergence of *dependent type theory* raises the possibility of an axiomatic basis for parametricity *internal* to type theory.
- In recent years, several systems of dependent type theory have emerged, employing various methods to internalize such reasoning via parametricity. Some of these have moreover been applied to significant problems in *homotopy type theory*, arising from the complex higher-categorical structure thereof.
- As yet no unifying axiomatic framework for such approaches to internal parametricity.

- Reynolds' original analysis of parametricity was wholly *external* to the internal logic of System F.
- The emergence of *dependent type theory* raises the possibility of an axiomatic basis for parametricity *internal* to type theory.
- In recent years, several systems of dependent type theory have emerged, employing various methods to internalize such reasoning via parametricity. Some of these have moreover been applied to significant problems in *homotopy type theory*, arising from the complex higher-categorical structure thereof.
- As yet no unifying axiomatic framework for such approaches to internal parametricity.
- This work constitutes a first step toward such a unifying framework, based on the category-theoretic concept of *cohesion*.

ふぞう Axiomatic Cohesion

Lawvere: cohesion as an abstract characterization of when one category behaves like a category of spaces defined over another:

ふぞう Axiomatic Cohesion

Lawvere: cohesion as an abstract characterization of when one category behaves like a category of spaces defined over another:

• A topos \mathcal{E} is *cohesive* over another topos \mathcal{S} if there is a string of four adjoint functors between them as follows:

where Δ , ∇ are fully faithful and Π preserves finite products.

ふぞう Axiomatic Cohesion

Lawvere: cohesion as an abstract characterization of when one category behaves like a category of spaces defined over another:

• A topos \mathcal{E} is *cohesive* over another topos \mathcal{S} if there is a string of four adjoint functors between them as follows:

where Δ , ∇ are fully faithful and Π preserves finite products.

• Induces a string of adjoint endofunctors on \mathcal{E} :

with \int , \ddagger idempotent monads, and \flat an idempotent comonad.

▶ ★ ★ Example: Reflexive Graphs

The category of reflexive graphs **RGph** is cohesive over the category of sets **Set**.

 Γ maps a reflexive graph G to its set of vertices, Π maps G to its set of *weakly connected components*.

 Δ maps a set V to the *discrete* graph with vertex set V, and ∇ maps V to the *codiscrete* (i.e. complete) graph on V.

• Many classical models of parametricity are based upon semantic interpretations of type structure in terms of reflexive graphs. This is no accident, due to the *cohesive* structure of reflexive graphs.

- Many classical models of parametricity are based upon semantic interpretations of type structure in terms of reflexive graphs. This is no accident, due to the *cohesive* structure of reflexive graphs.
- More generally, for any base topos S, the corresponding topos RGph(S) of internal reflexive graphs in S is cohesive over S. Hence the internal language of reflexive graphs can be used to derive parametricity results for any topos.

- Many classical models of parametricity are based upon semantic interpretations of type structure in terms of reflexive graphs. This is no accident, due to the *cohesive* structure of reflexive graphs.
- More generally, for any base topos S, the corresponding topos RGph(S) of internal reflexive graphs in S is cohesive over S. Hence the internal language of reflexive graphs can be used to derive parametricity results for any topos.
- In fact, this same setup of cohesion is interpretable, *mutatis mutandis*, in the case where *E*, *S* are not (1-)topoi, but rather ∞-topoi, i.e. models of homotopy type theory (HoTT).

- Many classical models of parametricity are based upon semantic interpretations of type structure in terms of reflexive graphs. This is no accident, due to the *cohesive* structure of reflexive graphs.
- More generally, for any base topos S, the corresponding topos RGph(S) of internal reflexive graphs in S is cohesive over S. Hence the internal language of reflexive graphs can be used to derive parametricity results for any topos.
- In fact, this same setup of cohesion is interpretable, *mutatis mutandis*, in the case where *E*, *S* are not (1-)topoi, but rather ∞-topoi, i.e. models of homotopy type theory (HoTT).
- We can thus use the language of HoTT suitably extended with cohesive modalities to work *synthetically* with the structure of such a cohesive ∞-topos.

Following Shulman's (2018) formulation of cohesive HoTT:

小 ?? * Type-Theoretic Cohesion

Following Shulman's (2018) formulation of cohesive HoTT: **Problem:** the \flat modality is not well-defined in arbitrary contexts, but only in those consisting entirely of *discrete* variables.

ふどき Type-Theoretic Cohesion

Following Shulman's (2018) formulation of cohesive HoTT: **Problem:** the b modality is not well-defined in arbitrary contexts, but only in those consisting entirely of *discrete* variables. **Solution:** modify the structure of contexts to keep track of which variables are *discrete*.

ふどきジズ Type-Theoretic Cohesion

Contexts now of the form $\Delta \mid \Xi$ where Δ consists of *discrete* variables, while Ξ consists of ordinary variables. The type of an ordinary variable may depend on both ordinary and discrete variables, but the type of a discrete variable can only depend upon other discrete variables.

$$\frac{\Delta \mid \exists \mathsf{Ctx} \quad \Delta \mid \exists \vdash \mathsf{S} \mathsf{Type}}{\Delta \mid \exists, x : \mathsf{S} \mathsf{Ctx}} \qquad \frac{\Delta \mid \exists \mathsf{Ctx} \quad \Delta \mid - \vdash \mathsf{S} \mathsf{Type}}{\Delta, x : \mathsf{S} \mid \exists \mathsf{Ctx}}$$

ふ ?? ? ? ? ? Type-Theoretic Cohesion

Rules for **b** are then essentially those of a Pfenning-Davies-style modal necessity operator:

	$\frac{\Delta \mid - \vdash S \text{ Type}}{\Delta \mid \Xi \vdash \flat S \text{ Type}}$	$\frac{\Delta \mid - \vdash s}{\Delta \mid \Xi \vdash s^{\flat}}$		
$\Delta \mid \Xi \vdash s : \flat S$	$\Delta \mid \Xi, z : \flat S \vdash R T_{\Sigma}$	ype Δ, x	$: S \mid \Xi \vdash r : R[x^{\flat}/z]$	
$\Delta \mid \Xi \vdash let \ x^\flat = s in r : R[s/z]$				
let $x^{\flat} = s^{\flat}$ in $r \equiv r[s/x]$				

ふぞう Type-Theoretic Cohesion

Rules for b are then essentially those of a Pfenning-Davies-style modal necessity operator:

	$\frac{\Delta \mid - \vdash S \text{ Type}}{\Delta \mid \Xi \vdash \flat S \text{ Type}}$		$\frac{- \vdash s : S}{\Xi \vdash s^{\flat} : \flat S}$		
$\Delta \mid \Xi \vdash s : \flat S$	$\Delta \mid \Xi, z : \flat S \vdash R T_{Y}$	/pe	$\Delta, x: S \mid \Xi \vdash r: R[x^b/z]$		
$\Delta \mid \Xi \vdash \text{let } x^{\flat} = s \text{ in } r : \mathbb{R}[s/z]$					
let $x^{\flat} = s^{\flat}$ in $r \equiv r[s/x]$					
For any type S, we have $\varepsilon_S: \flat S \to S$ given by					

$$\epsilon(s) := \operatorname{let} x^{\flat} = s \operatorname{in} x$$

S is *discrete* if ε_S is an equivalence.

ふぞき Sufficient Cohesion

How is this all related to parametricity?

• Cohesion lets us ask what is the *shape* of an abstract relation between elements of a type.

ふぞき Sufficient Cohesion

- Cohesion lets us ask what is the *shape* of an abstract relation between elements of a type.
- In particular, there should be some type I that *classifies* this shape, in the sense that maps I → S correspond to abstract relations – or, to use a more geometric term, *paths* – between elements of S.

♪????!X Sufficient Cohesion

- Cohesion lets us ask what is the *shape* of an abstract relation between elements of a type.
- In particular, there should be some type I that *classifies* this shape, in the sense that maps I → S correspond to abstract relations – or, to use a more geometric term, *paths* – between elements of S.
- In **RGph**, the role of such a path classifier is played by the *walking* edge graph I := $\{0 \rightarrow 1\}$

♪ ? ? ? ? Sufficient Cohesion

- Cohesion lets us ask what is the *shape* of an abstract relation between elements of a type.
- In particular, there should be some type I that *classifies* this shape, in the sense that maps I → S correspond to abstract relations – or, to use a more geometric term, *paths* – between elements of S.
- In RGph, the role of such a path classifier is played by the *walking* edge graph I := {0 → 1}
- Two key properties of I:

♪ ? ? ? ? Sufficient Cohesion

- Cohesion lets us ask what is the *shape* of an abstract relation between elements of a type.
- In particular, there should be some type I that *classifies* this shape, in the sense that maps I → S correspond to abstract relations – or, to use a more geometric term, *paths* – between elements of S.
- In RGph, the role of such a path classifier is played by the *walking* edge graph I := {0 → 1}
- Two key properties of I:
 - It is strictly bipointed, i.e. $0 \neq 1 \in I$

♪ ? ? ? ? Sufficient Cohesion

- Cohesion lets us ask what is the *shape* of an abstract relation between elements of a type.
- In particular, there should be some type I that *classifies* this shape, in the sense that maps I → S correspond to abstract relations – or, to use a more geometric term, *paths* – between elements of S.
- In RGph, the role of such a path classifier is played by the *walking* edge graph I := {0 → 1}
- Two key properties of I:
 - It is strictly bipointed, i.e. $0 \neq 1 \in I$
 - It is connected, i.e. $\int I \simeq 1$

ふごうジズ Sufficient Cohesion

- Cohesion lets us ask what is the *shape* of an abstract relation between elements of a type.
- In particular, there should be some type I that *classifies* this shape, in the sense that maps I → S correspond to abstract relations – or, to use a more geometric term, *paths* – between elements of S.
- In RGph, the role of such a path classifier is played by the *walking* edge graph I := {0 → 1}
- Two key properties of I:
 - It is strictly bipointed, i.e. $0 \neq 1 \in I$
 - It is connected, i.e. $\int I \simeq 1$
- The existence of an object with these two properties is equivalent to what Lawvere called *sufficient cohesion*.

Lemma: in (the internal language of) a sufficiently cohesive topos, all paths in discrete types are constant.

ふぞう Sufficient Cohesion

Lemma: in (the internal language of) a sufficiently cohesive topos, all paths in discrete types are constant.

Proof: let S be a discrete type. A path in S is a function $f : I \rightarrow S$. Since S is discrete, f factors as

$$I \xrightarrow{f_b} bS \xrightarrow{\epsilon_S} S$$

for some $f_{\flat} : I \rightarrow \flat S$.

ふぞき Sufficient Cohesion

Lemma: in (the internal language of) a sufficiently cohesive topos, all paths in discrete types are constant.

Proof: let S be a discrete type. A path in S is a function $f : I \rightarrow S$. Since S is discrete, f factors as

 $I \xrightarrow{f_b} bS \xrightarrow{\epsilon_S} S$

for some $f_b : I \to bS$. But then since $\int \dashv b$, it follows that there is $f_f : \int I \to S$ such that

where η is the unit for the monad \int . Then since I is connected, $\int I \simeq 1$ and so *f* factors through 1, i.e. *f* is constant.

• To represent such paths in type theory, we may borrow some ideas from cubical type theory and simplicial type theory.

- To represent such paths in type theory, we may borrow some ideas from cubical type theory and simplicial type theory.
- We postulate an abstract interval type I with two points 0, 1 : I.

- To represent such paths in type theory, we may borrow some ideas from cubical type theory and simplicial type theory.
- We postulate an abstract interval type I with two points **0**, **1** : I.
- Given a family of types $i : I \vdash S(i)$ Type, a path from $s_0 : S(0)$ to $s_1 : S(1)$ is a dependent function

$$f: \prod_{i:\mathbf{I}} S(i)$$
 such that $f\mathbf{0} \equiv s_0$ and $f\mathbf{1} \equiv s_1$

- To represent such paths in type theory, we may borrow some ideas from cubical type theory and simplicial type theory.
- We postulate an abstract interval type I with two points **0**, **1** : I.
- Given a family of types $i : I \vdash S(i)$ Type, a path from $s_0 : S(0)$ to $s_1 : S(1)$ is a dependent function

$$f: \prod_{i:\mathbf{I}} \mathbf{S}(i)$$
 such that $f\mathbf{0} \equiv s_0$ and $f\mathbf{1} \equiv s_1$

• Write Path_{*i*.S(*i*)}(*s*₀, *s*₁) for the type of such paths.

- To represent such paths in type theory, we may borrow some ideas from cubical type theory and simplicial type theory.
- We postulate an abstract interval type I with two points **0**, **1** : I.
- Given a family of types $i : I \vdash S(i)$ Type, a path from $s_0 : S(0)$ to $s_1 : S(1)$ is a dependent function

$$f: \prod_{i:\mathbf{I}} \mathbf{S}(i)$$
 such that $f\mathbf{0} \equiv s_0$ and $f\mathbf{1} \equiv s_1$

- Write $Path_{i.S(i)}(s_0, s_1)$ for the type of such paths.
- A type S is *path-discrete* if for all $s_0, s_1 : S$, the canonical map $s_0 =_S s_1 \rightarrow \text{Path}_{i,S}(s_0, s_1)$ is an equivalence.

- To represent such paths in type theory, we may borrow some ideas from cubical type theory and simplicial type theory.
- We postulate an abstract interval type I with two points **0**, **1** : I.
- Given a family of types $i : I \vdash S(i)$ Type, a path from $s_0 : S(0)$ to $s_1 : S(1)$ is a dependent function

$$f: \prod_{i:\mathbf{I}} \mathbf{S}(i)$$
 such that $f\mathbf{0} \equiv s_0$ and $f\mathbf{1} \equiv s_1$

- Write $Path_{i.S(i)}(s_0, s_1)$ for the type of such paths.
- A type S is *path-discrete* if for all $s_0, s_1 : S$, the canonical map $s_0 =_S s_1 \rightarrow \mathsf{Path}_{i:S}(s_0, s_1)$ is an equivalence.
- The above lemma says that, if a type is discrete, then it is path-discrete.

ه کې د Graph Types

To make full use of the structure of sufficient cohesion, we also need some way to make use of the fact that I is strictly bipointed. For this purpose, we introduce *graph types*.

د المربق Graph Types کر ال

To make full use of the structure of sufficient cohesion, we also need some way to make use of the fact that I is strictly bipointed. For this purpose, we introduce *graph types*.

Given S Type, a type family x : S ⊢ T(x) Type, and an element i : I, the graph type Gph1ⁱ_{x:S}T(x) is the type of dependent pairs whose second element exists only under the assumption that i ≡ 1, i.e.

(s, t) such that s : S and $i \equiv 1 \vdash t : T(s)$

ه کې کې Graph Types

To make full use of the structure of sufficient cohesion, we also need some way to make use of the fact that I is strictly bipointed. For this purpose, we introduce *graph types*.

Given S Type, a type family x : S ⊢ T(x) Type, and an element i : I, the graph type Gph1ⁱ_{x:S}T(x) is the type of dependent pairs whose second element exists only under the assumption that i ≡ 1, i.e.

$$(s, t)$$
 such that $s : S$ and $i \equiv 1 \vdash t : T(s)$

 In the case where i ≡ 0, we therefore have Gph1ⁱ_{x:S}T(x) ≃ S, and we strengthen this equivalence into the following judgmental equalities:

$$\mathsf{Gph1}^{\mathbf{0}}_{x:\mathsf{S}}^{\mathbf{0}}\mathsf{T}(x) \equiv \mathsf{S} \qquad \frac{p:\mathsf{Gph1}^{\mathbf{0}}_{x:\mathsf{S}}\mathsf{T}(x)}{\pi_1(p) \equiv p} \qquad \frac{(s,t):\mathsf{Gph1}^{\mathbf{0}}_{x:\mathsf{S}}\mathsf{T}(x)}{(s,t) \equiv s}$$

ふぞう The Polymorphic Identity

Lemma: given α : $\prod_{X:Type} X \rightarrow X$, for any *path-discrete* type A together with $x : A \vdash B(x)$ Type and a : A with b : B(a), the type $B(\alpha \land a)$ is inhabited.

Three steps to prove parametricity:

1 Define a function step1 : $\prod_{i:I} \text{Gph}_{x:A}^{i} B(x)$ such that step1(0) $\equiv \alpha \land a$

```
step1 := \lambda i : I. \alpha (Gph1<sup>i</sup><sub>x:A</sub>B(x)) (a, b)
```

ふぞう The Polymorphic Identity

Lemma: given α : $\prod_{X:Type} X \rightarrow X$, for any *path-discrete* type A together with $x : A \vdash B(x)$ Type and a : A with b : B(a), the type $B(\alpha \land a)$ is inhabited.

Three steps to prove parametricity:

1 Define a function step1 : $\prod_{i:I} \text{Gph}_{x:A}^{i} B(x)$ such that step1(0) $\equiv \alpha \text{ A } a$

```
step1 := \lambda i : I. \alpha (Gph1<sup>i</sup><sub>x:A</sub>B(x)) (a, b)
```

 Taking the second projection of step1(1) gives step2 : B(π₁(step1(1)))

ふぞう The Polymorphic Identity

Lemma: given $\alpha : \prod_{X:Type} X \to X$, for any *path-discrete* type A together with $x : A \vdash B(x)$ Type and a : A with b : B(a), the type $B(\alpha \land a)$ is inhabited.

Three steps to prove parametricity:

1 Define a function step1 : $\prod_{i:I} \text{Gph}_{x:A}^{i} B(x)$ such that step1(0) $\equiv \alpha \text{ A } a$

```
step1 := \lambda i : I. \alpha (Gph1<sup>i</sup><sub>x:A</sub>B(x)) (a, b)
```

- Taking the second projection of step1(1) gives step2 : B(π₁(step1(1)))
- Taking the first projection of step1(*i*) for *i* : I gives a path step3 : Path_{*i*.A}(α A *a*, π₁(step1(1))), and since A is path-discrete, this yields an identity α A *a* =_A π₁(step1(1)), along which we can transport step2 to obtain an inhabitant of B(α A *a*). □

ふぞう Applications in HoTT

• This same technique can be used to derive induction principles for inductive and *higher* inductive types from their recursors alone. The derivation is very straightforward, following essentially the same **three steps to prove parametricity** as above.

♪ ? ? ? ? ? Applications in HoTT

- This same technique can be used to derive induction principles for inductive and *higher* inductive types from their recursors alone. The derivation is very straightforward, following essentially the same **three steps to prove parametricity** as above.
- Previously, induction principles could be derived from recursors using the Awodey-Frey-Speight strategy of restricting to instances of recursors satisfying certain higher-categorical *coherence conditions*. However, these conditions quickly grow in complexity and become intractable to work with. This is essentially an instance of the *coherence problem* in HoTT.

♪ ? ? ? ? ? Applications in HoTT

- This same technique can be used to derive induction principles for inductive and *higher* inductive types from their recursors alone. The derivation is very straightforward, following essentially the same **three steps to prove parametricity** as above.
- Previously, induction principles could be derived from recursors using the Awodey-Frey-Speight strategy of restricting to instances of recursors satisfying certain higher-categorical *coherence conditions*. However, these conditions quickly grow in complexity and become intractable to work with. This is essentially an instance of the *coherence problem* in HoTT.
- The approach to this problem via internal parametricity in cohesive HoTT suffers none of these defects, and easily handles examples such as the circle, for which the analogous Awodey-Frey-Speight encoding is already quite complex.

• These results have all been formalized in Agda using the --cohesion flag.

- These results have all been formalized in Agda using the --cohesion flag.
 - anyone who's interested can import the code and start using it to prove parametricity theorems in Agda *today*: https://github.com/cbaberle/Parametricity-via-Cohesion

- These results have all been formalized in Agda using the --cohesion flag.
 - anyone who's interested can import the code and start using it to prove parametricity theorems in Agda *today*: https://github.com/cbaberle/Parametricity-via-Cohesion
- In this talk we have mainly considered *unary* parametricity, but this approach handles binary and *n*-ary parametricity just as well.
 - Jason Reed has a nice formalization of K-ary parametricity for any type K with decidable equality: https://github.com/jcreedcmu/aberle-parametricity-exercise/blob/main/ExerciseN.agda

- These results have all been formalized in Agda using the --cohesion flag.
 - anyone who's interested can import the code and start using it to prove parametricity theorems in Agda *today*: https://github.com/cbaberle/Parametricity-via-Cohesion
- In this talk we have mainly considered *unary* parametricity, but this approach handles binary and *n*-ary parametricity just as well.
 - Jason Reed has a nice formalization of K-ary parametricity for any type K with decidable equality: https://github.com/jcreedcmu/aberle-parametricity-exercise/blob/main/ExerciseN.agda
- Hope that the account of parametricity via cohesion or some suitable generalization thereof can serve as a unifying framework for these and other applications of internal parametricity in dependent type theory.

هُوَان Alpha Seyond? ...and Beyond?

- These results have all been formalized in Agda using the --cohesion flag.
 - anyone who's interested can import the code and start using it to prove parametricity theorems in Agda *today*: https://github.com/cbaberle/Parametricity-via-Cohesion
- In this talk we have mainly considered *unary* parametricity, but this approach handles binary and *n*-ary parametricity just as well.
 - Jason Reed has a nice formalization of K-ary parametricity for any type K with decidable equality: https://github.com/jcreedcmu/aberle-parametricity-exercise/blob/main/ExerciseN.agda
- Hope that the account of parametricity via cohesion or some suitable generalization thereof can serve as a unifying framework for these and other applications of internal parametricity in dependent type theory.
 - Further work: internal parametricity for linear programs (in some form of linear dependent type theory?)

#