Amortized Analysis via Coalgebra

Harrison Grodin and Robert Harper
MFPS 2024

Carnegie Mellon University



Acknowledgements

This work was improved through discussions with Max New, Yue
Niu, and David Spivak and collaboration with Zachary Battleman,
Runming Li, Parth Shastri, and Jonathan Sterling.

Sponsored by AFOSR grant FA9550-21-0009 (Tristan Nguyen,
PM) and by NSF grant CCF-1901381.



In a category of algebras,
amortized analyses are coalgebra morphisms.



Background



Amortized Analysis

In many uses of data structures, a sequence of opera-
tions, rather than just a single operation, is performed,
and we are interested in the total time of the sequence,
rather than in the times of the individual operations.
—Tarjan, 1985



Amortized Analysis (cont.)

Amortizing Bulk Cost

amortized cost

30 real cost

potential ¢
20 | ’_'_'_'_l_'_r
10 ’_'_l_'_'_'_r

0 10 20 30
number of operations

total cost




Amortized Analysis (cont.)

Amortizing Queue

amortized cost r N
real cost I
30 b potential @ 0

20 + u
10 | r_lJ'rHr

0 25 50 75 100
number of operations

total cost




Amortized Analysis: Potential Method

Let d,d’ € D be states of a data structure. For each operation:
amortized cost = real cost + ®(d’) — ®(d)

Here, ® : D — Z is maps states to “potential”, extra imagined
up-front cost to offset big operations.

e Cheap operations save potential: ®(d") > ®(d).
e Expensive operations spend potential: ®(d’) < ®(d).



Abstract Cost Analysis via the Writer Monad

calf is an effectful dependent type theory for studying the cost and
behavior of algorithms and data structures.

Example

isort : list(E) — F(list(E))
isort [] = ret([])
isort (x :: xs) =

bind xs” « isort xsin

insert x xs'



Abstract Cost Analysis via the Writer Monad (cont.)

For effects, calf is “polarized” (a la CBPV/EEC/LNL).
Cost Annotation

To instrument a program with cost c, effect charge($c) .

Effects commute with computations: effects now are effects later.

charge($c) ; (Ax. €) = Ax. (charge($c) ; €)
charge($c) ; (e1, &) = ((charge($c) ; e1), (charge($c) ; e2))



Abstract Cost Analysis via the Writer Monad (cont.)

Semantics

Category of cost algebras, Alg(T), where T is the writer monad
C x (—), using adjunction F 4 U : Alg(T) — C.

Notation:

FA— X
A—X
A— UX

5s:A=C  6,:A— B
5:A—FB




Coalgebraic Semantics of Data Structures

Definition
A signature is an endofunctor ¥ : Alg(T) — Alg(T).

Example

The signature for queues
YX =(E—=X)x (F1+ (E x X))
power copower

provides two operations

enqueue : E — X
dequeue : F1 + (E x X)

where X is the “state type".

10



Coalgebraic Semantics of Data Structures (cont.)

Definition

A X -coalgebra (D, § : D — ¥X.D) is an implementation of ¥.

Example
With signature X for queues as before:

e carrier D = F(list(E)), and

e transition map
0:D— (E—D)x(F1+(E x D))

implements the operations.

11



Coalgebraic Semantics of Data Structures (cont.)

Definition (morphism of X-coalgebras)

A morphism (D, d) — (S, 0) is a morphism ® : D — S that
preserves the 2 -coalgebra structure:

D—43%D

|0 |z

S—7>1%S§
The specification S simulates the data structure D.

12



Basic Examples




Example: Bulk Cost

Specification (carrier F1)

Charges $1 every cycle:

c:1—~F1
o * = charge($1) ; ret(x)

13



Example: Bulk Cost

Specification (carrier F1)

Charges $1 every cycle:

c:1—~F1
o * = charge($1) ; ret(x)

Implementation (carrier F(Fing))
Charges $8 every 8 cycles:

0 Fing — F(Fing)
d 7 = charge($8) ; ret(0)
d d = ret(suc d)

13



Example: Bulk Cost (cont.)

Coalgebra morphism & : Fing — F1 must satisfy:

O:0=6:X0

14



Example: Bulk Cost (cont.)

Coalgebra morphism & : Fing — F1 must satisfy:
O:0=6:X0
Since U(F1) = C, equivalently ¢ : Fing — C:

®(d) + o5 = d5(d) + ®(50(d))

14



Example: Bulk Cost (cont.)

Coalgebra morphism & : Fing — F1 must satisfy:
P:0=6;20
Since U(F1) = C, equivalently ¢ : Fing — C:
®(d) + o5 = d5(d) + ®(50(d))

When C = Z: amortized cost

e
o5 = 05(d) +®(d5(d)) — ®(d)

Treal cost Tnevv state d’

14



Example: Bulk Cost (cont.)

Coalgebra morphism & : Fing — F1 must satisfy:
P:0=6;20
Since U(F1) = C, equivalently ¢ : Fing — C:
®(d) + o5 = d5(d) + ®(50(d))

When C = Z: amortized cost

e
o5 = 05(d) +®(d5(d)) — ®(d)

Treal cost Tnevv state d’

For example, ®(d) = $d.

14



Example: Batched Queue

(14,3],[1,2])
enqueue 5
([5,4,3],[1,2])
( /I lO ) dequeue 1
inbox IistT Toutbox list ([57 4, 3]7 [2])
e Enqueue to inbox; dequeue 2
e dequeue from outbox; (54,31, 1)
e move inbox to outbox dequeue 3
when outbox empty. (11, [4,5])
enqueue 6
(6], [4,5])

ii5)



Example: Batched Queue (cont.)

Specification (carrier F(list(E)))
Charges $1 per enqueue, $0 per dequeue:
o list(E) — L(F(list(E)))
o .enqueue | e = charge($1) ; ret(/ + [e])

o .dequeue = - - -

Implementation (carrier F(list(E)?))

Charges $0 per enqueue, $0 (usually) or $n (rarely) per dequeue.

16



Example: Batched Queue (cont.)

Specification (carrier F(list(E)))
Charges $1 per enqueue, $0 per dequeue:

o : list(E) — Z(F(list(E)))
o .enqueue | e = charge($1) ; ret(/ + [e])

o .dequeue = - - -

Implementation (carrier F(list(E)?))

Charges $0 per enqueue, $0 (usually) or $n (rarely) per dequeue.

Let ®(/;, lo) = charge($( length(/;) )) ; ret( lo 4 reverse(/;) ).

potential functionT integrated behavior]

16



Amortizing Other Effects

Non-Commutative Cost Models

Choosing C = String, amortized string printing is buffering:

®( “hello” ) # “world” = "hellowor” + ®( “Id" )
old bufFerT spec printT impl printT new bufFerT

“Potential function” @ is the inclusion, flushing the buffer.

17



Amortizing Other Effects

Non-Commutative Cost Models

Choosing C = String, amortized string printing is buffering:

®( “hello” ) # “world” = "hellowor” + ®( “Id" )
old bufFerT spec printT impl printT new bufFerT

“Potential function” @ is the inclusion, flushing the buffer.

Randomized Amortized Analysis

Using monad D(C x (—)), amortize randomness.

17



Amortizing Other Effects

Non-Commutative Cost Models

Choosing C = String, amortized string printing is buffering:

®( “hello” ) # “world” = "hellowor” + ®( “Id" )

| ] | |

“Potential function” @ is the inclusion, flushing the buffer.

Randomized Amortized Analysis

Using monad D(C x (—)), amortize randomness.

Expected Amortized Analysis

Using monad C x D(—), expected amortized analysis.

17



Composition of Potential Functions

Potential functions are coalgebra morphisms, so they compose.

Example
For bulk cost amortization:

(D1s, 616) —>— (Dg, d8) —>— (S, 0)

18



Composition of Potential Functions (cont.)

To compose data structures with different signatures:
pX
/ Coalg(X)

Example

Amortized queues implemented via a pair of amortized stacks.

asQueue : Xstacks — ZQueue

D aSQueue(DstackS) 5stacks) — (Squeuea Uqueue)

19



Generalizations




Lax Amortized Analysis

Sometimes, the amortized cost is an overestimate:
amortized cost > real cost + ®(d’) — d(d)

In some cases, the change in potential is less than the spec.

Upgrade to bicategories: programs are ordered by inequality.

20



Lax Amortized Analysis (cont.)

Definition (colax morphism of Y-coalgebras)
A colax morphism (D, §) — (S, o) is a morphism ® : D — S that
“colaxly” preserves the ¥ -coalgebra structure:

D—-2+3%D
Lbl?go% lﬂb
S—257%S

Here, 2-cell ¢ : (®;0) < (6; X®P) is a proof of inequality.

Choose C = Poset, letting all types but C = w be discrete.

®(d) + o5 > d5(d) + P(do(d))

21



Lax Amortized Analysis (cont.)

Remark
A 2-cell ® < @ justifies that ® is a tighter analysis than ¢’.

Example
For bulk cost, both

o(d) = $d
o'(d) = $(d + 1)

are coalgebra morphisms. Now, observe that ® < ¢'.

22



Splitting Potential

Example

Some operations split data structures into parts:

XX=X®X

Informally, for multiple outputs: total output potential

og > dg(d Zw(d o(d)

Made formal when T is commutative, using map
FA® FB =5 F(A x B)

to add potential.

23



Splitting Potential (cont.)

Example
Let d: FA — F1:

FA— s FAQFA

le = Joso

F1 2 s FI®Fl =— F1

In other words:

o(d) + 05 > d5(d) + Y D(de(d)))
ie{1,2}

24



Combining Potential

Some data structures, e.g. queues, support an append operation:

X@X—=X
X = (X — X)
But, XX = X —o X is not functorial!
Instead, use a profunctor ¥ : Alg(T)°® x Alg(T) — Set . Here:

(X~ X+) (X~ @ X~ )—oX+
As desired, this gives us:

S od) + o5 > b5(d) + D(.(d))
ie{1,2}

total input potentiaIT

25



Conclusion




Conclusion

Foundation
In a category of cost algebras, a coalgebra morphism is a
generalized potential function of amortized analysis.

e Integrates cost and behavior;
e Provides a theory of composition for amortized analyses;

e Elegantly supports amortization of arbitrary effects;

e Simplifies formalization.

Extensions
e Inexact amortized analysis expressed via bicategories;
e Splitting potential expressed via monoidal products;

e Combining potential expressed via profunctors.

26



	Background
	Basic Examples
	Generalizations
	Conclusion

