Positive Focusing is Directly Useful

Jui-Hsuan Wu (Ray) and Beniamino Accattoli

LIX, Ecole Polytechnique & Inria Saclay

MFPS 2024 University of Oxford, UK

21 June 2024

Sharing is important.

But there is no sharing in the λ -calculus.

The simplest way to introduce sharing in the λ -calculus is *subterm* sharing.

 $t, u \coloneqq x \mid tu \mid \lambda x. t$

In a call-by-value setting, general applications tu become somewhat redundant.

Sharing is important.

But there is no sharing in the λ -calculus.

The simplest way to introduce sharing in the λ -calculus is *subterm* sharing.

$t, u \coloneqq x \mid tu \mid \lambda x. t$

In a call-by-value setting, general applications tu become somewhat redundant.

Sharing is important.

But there is no sharing in the λ -calculus.

The simplest way to introduce sharing in the λ -calculus is *subterm* sharing.

t, $u = x | tu | \lambda x.t | \text{let } x = u \text{ in } t$

In a call-by-value setting, general applications tu become somewhat redundant.

Sharing is important.

But there is no sharing in the λ -calculus.

The simplest way to introduce sharing in the λ -calculus is *subterm* sharing.

t, $u = x | tu | \lambda x.t | t[x \leftarrow u]$ (explicit substitution)

In a call-by-value setting, general applications tu become somewhat redundant.

Sharing is important.

But there is no sharing in the λ -calculus.

The simplest way to introduce sharing in the λ -calculus is *subterm* sharing.

t, $u = x | tu | \lambda x. t | t[x \leftarrow u]$ (explicit substitution)

In a call-by-value setting, general applications tu become somewhat redundant.

In CbV, there are many possible ways to restrict the shape of applications:

In CbV, there are many possible ways to restrict the shape of applications:

In CbV, there are many possible ways to restrict the shape of applications:

In CbV, there are many possible ways to restrict the shape of applications:

value as the left subterm of an application

In CbV, there are many possible ways to restrict the shape of applications:

value as the left subterm of an application

In CbV, there are many possible ways to restrict the shape of applications:

In CbV, there are many possible ways to restrict the shape of applications:

In CbV, there are many possible ways to restrict the shape of applications:

In CbV, there are many possible ways to restrict the shape of applications:

In CbV, there are many possible ways to restrict the shape of applications:

These restrictions are typical in a call-by-value setting, as substitutions of applications sometimes are simply blocked by the syntax:

$$
xy \xrightarrow{\hspace{1cm}} y
$$

substituting zw for x

In CbV, there are many possible ways to restrict the shape of applications:

$$
xy \xrightarrow{\hspace{1cm}} (zw)y
$$

substituting zw for x

In CbV, there are many possible ways to restrict the shape of applications:

$$
xy \xrightarrow{\hspace{1cm}} (zw)y
$$

substituting zw for x

It is actually possible to have only variables as immediate sub-terms of applications

Now we have nine different forms of applications:

- the general form tu
- \bullet eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

-
-

It is actually possible to have only variables as immediate sub-terms of applications

Now we have nine different forms of applications:

- \bullet the general form tu
- eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

-
-

It is actually possible to have only variables as immediate sub-terms of applications

Now we have nine different forms of applications:

- the general form tu
- eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

- Nested or flattened ESs: $t[x\leftarrow u[y\leftarrow r]]$ vs. $t[x\leftarrow u][y\leftarrow r]$
- Small-step vs. micro-step substitutions:

$$
(xx)[x-1] \rightarrow 11
$$

vs.

$$
(xx)[x-1] \rightarrow (1x)[x-1] \rightarrow (11)[x-1] \rightarrow 11
$$

It is actually possible to have only variables as immediate sub-terms of applications

Now we have nine different forms of applications:

- the general form tu
- eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

- Nested or flattened ESs: $t[x \leftarrow u[y \leftarrow r]]$ vs. $t[x \leftarrow u][y \leftarrow r]$
- Small-step vs. micro-step substitutions:

$$
(xx)[x\leftarrow I] \rightarrow II
$$

vs.

$$
(xx)[x\leftarrow I] \rightarrow (lx)[x\leftarrow I] \rightarrow (II)[x\leftarrow I] \rightarrow II
$$

It is actually possible to have only variables as immediate sub-terms of applications

Now we have nine different forms of applications:

- the general form tu
- eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

- Nested or flattened ESs: $t[x \leftarrow u[y \leftarrow r]]$ vs. $t[x \leftarrow u][y \leftarrow r]$
- Small-step vs. micro-step substitutions:

$$
(xx)[x\leftarrow I] \rightarrow II
$$

vs.

$$
(xx)[x\leftarrow I] \rightarrow (lx)[x\leftarrow I] \rightarrow (II)[x\leftarrow I] \rightarrow II
$$

It is actually possible to have only variables as immediate sub-terms of applications

Now we have nine different forms of applications:

- the general form tu
- eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

- Nested or flattened ESs: $t[x \leftarrow u[y \leftarrow r]]$ vs. $t[x \leftarrow u][y \leftarrow r]$
- Small-step vs. micro-step substitutions:

$$
(xx)[x\leftarrow I] \rightarrow II
$$

vs.

$$
(xx)[x\leftarrow I] \rightarrow (lx)[x\leftarrow I] \rightarrow (II)[x\leftarrow I] \rightarrow II
$$

Positive Focusing is Directly Useful

In micro-step settings, one has the following substitution rule:

 $C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]$

What about making a substitution only when it contributes to the creation of some β-redexes?

Consider

$$
(yx)[x\leftarrow I] \rightarrow (yI)[x\leftarrow I]
$$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

- $(xy)[x\leftarrow1] \rightarrow (by)[x\leftarrow1]$ is useful
- $x[x \leftarrow 1] \rightarrow 1[x \leftarrow 1]$ is non-useful

In micro-step settings, one has the following substitution rule:

 $C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]$

What about making a substitution only when it contributes to the creation of some β-redexes?

Consider

 $(yx)[x\leftarrow 1] \rightarrow (y1)[x\leftarrow 1]$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

- $(xy)[x\leftarrow1] \rightarrow (by)[x\leftarrow1]$ is useful
- $x[x \leftarrow 1] \rightarrow 1[x \leftarrow 1]$ is non-useful

In micro-step settings, one has the following substitution rule:

$$
C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]
$$

What about making a substitution only when it contributes to the creation of some β-redexes?

Consider

```
(yx)[x\leftarrow 1] \rightarrow (y1)[x\leftarrow 1]
```
There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

- $(xy)[x\leftarrow1] \rightarrow (by)[x\leftarrow1]$ is useful
- $x[x \leftarrow 1] \rightarrow 1[x \leftarrow 1]$ is non-useful

In micro-step settings, one has the following substitution rule:

$$
C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]
$$

What about making a substitution only when it contributes to the creation of some β-redexes?

Consider

$$
(yx)[x\leftarrow I] \rightarrow (yI)[x\leftarrow I]
$$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

- $(xy)[x\leftarrow1] \rightarrow (by)[x\leftarrow1]$ is useful
- $x[x \leftarrow 1] \rightarrow |[x \leftarrow 1]$ is non-useful

In micro-step settings, one has the following substitution rule:

$$
C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]
$$

What about making a substitution only when it contributes to the creation of some β-redexes?

Consider

$$
(yx)[x\leftarrow I] \rightarrow (yI)[x\leftarrow I]
$$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

Some more examples:

- $(xy)[x\leftarrow 1] \rightarrow (ly)[x\leftarrow 1]$ is useful
- $x[x\leftarrow I] \rightarrow I[x\leftarrow I]$ is non-useful

• $(xx)[x+1]$

In micro-step settings, one has the following substitution rule:

$$
C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]
$$

What about making a substitution only when it contributes to the creation of some β-redexes?

Consider

$$
(yx)[x\leftarrow I] \rightarrow (yI)[x\leftarrow I]
$$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

Some more examples:

- $(xy)[x\leftarrow 1] \rightarrow (ly)[x\leftarrow 1]$ is (directly) useful
- $x[x\leftarrow I] \rightarrow I[x\leftarrow I]$ is non-useful

• $(xx)[x+1]$

In micro-step settings, one has the following substitution rule:

$$
C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]
$$

What about making a substitution only when it contributes to the creation of some β-redexes?

Consider

$$
(yx)[x\leftarrow I] \rightarrow (yI)[x\leftarrow I]
$$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

- $(xy)[x\leftarrow 1] \rightarrow (ly)[x\leftarrow 1]$ is (directly) useful
- $x[x\leftarrow I] \rightarrow I[x\leftarrow I]$ is non-useful
- $(xx)[x+1]$

● Contextual closure:

- Indirect usefulness: $(xy)[x\leftarrow z][z\leftarrow]] \rightarrow (xy)[x\leftarrow]][z\leftarrow]]$
- Renaming chains:

$$
(x_0 t)[x_0+x_1][x_1+x_2]\cdots[x_{k-1}+x_k][x_k-1]
$$

\n
$$
\rightarrow (x_0 t)[x_0+x_1][x_1+x_2]\cdots[x_{k-1}+1][x_k+1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0+1][x_1+1]\cdots[x_{k-1}+1][x_k+1]
$$

● Contextual closure:

 $x[x \leftarrow 1] \rightarrow |[x \leftarrow 1]$ is non-useful while $x[x \leftarrow 1]y \rightarrow 1[x \leftarrow 1]y$ is useful

● Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow 1] \rightarrow (xy)[x \leftarrow 1][z \leftarrow 1]$

• Renaming chains:

$$
(x_0 t)[x_0+x_1][x_1+x_2]\cdots[x_{k-1}+x_k][x_k-1]
$$

\n
$$
\rightarrow (x_0 t)[x_0+x_1][x_1+x_2]\cdots[x_{k-1}+1][x_k+1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0+1][x_1+1]\cdots[x_{k-1}+1][x_k+1]
$$

- Contextual closure: $x[x\leftarrow1] \rightarrow 1[x\leftarrow1]$ is non-useful while $x[x \leftarrow 1]y \rightarrow 1[x \leftarrow 1]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow 1] \rightarrow (xy)[x \leftarrow 1][z \leftarrow 1]$
- Renaming chains:

$$
(x_0 t)[x_0 \leftarrow x_1][x_1 \leftarrow x_2] \cdots [x_{k-1} \leftarrow x_k][x_k \leftarrow 1]
$$

\n
$$
\rightarrow (x_0 t)[x_0 \leftarrow x_1][x_1 \leftarrow x_2] \cdots [x_{k-1} \leftarrow 1][x_k \leftarrow 1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0 \leftarrow 1][x_1 \leftarrow 1] \cdots [x_{k-1} \leftarrow 1][x_k \leftarrow 1]
$$

- Contextual closure: $x[x\leftarrow1] \rightarrow |[x\leftarrow1]$ is non-useful while $x[x \leftarrow 1]y \rightarrow 1[x \leftarrow 1]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow 1] \rightarrow (xy)[x \leftarrow 1][z \leftarrow 1]$
- Renaming chains:

$$
(x_0 t)[x_0 \leftarrow x_1][x_1 \leftarrow x_2] \cdots [x_{k-1} \leftarrow x_k][x_k \leftarrow 1]
$$

\n
$$
\rightarrow (x_0 t)[x_0 \leftarrow x_1][x_1 \leftarrow x_2] \cdots [x_{k-1} \leftarrow 1][x_k \leftarrow 1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0 \leftarrow 1][x_1 \leftarrow 1] \cdots [x_{k-1} \leftarrow 1][x_k \leftarrow 1]
$$
● Contextual closure: $x[x\leftarrow1] \rightarrow |[x\leftarrow1]$ is non-useful while $x[x \leftarrow 1]y \rightarrow 1[x \leftarrow 1]y$ is useful

- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow || \rightarrow (xy)[x \leftarrow ||z \leftarrow ||$
- Renaming chains:

$$
(x_0 t)[x_0+x_1][x_1+x_2]\cdots[x_{k-1}+x_k][x_k-1]
$$

\n
$$
\rightarrow (x_0 t)[x_0+x_1][x_1+x_2]\cdots[x_{k-1}+1][x_k+1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0+1][x_1+1]\cdots[x_{k-1}+1][x_k+1]
$$

- Contextual closure: $x[x\leftarrow1] \rightarrow |[x\leftarrow1]$ is non-useful while $x[x \leftarrow 1]y \rightarrow 1[x \leftarrow 1]y$ is useful
- Indirect usefulness: $(x,y)[x \leftarrow z][z \leftarrow || \rightarrow (xy)[x \leftarrow ||z \leftarrow ||$ is useful or not? $ightharpoonup$ It is useful!
- Renaming chains:

$$
(x_0 t)[x_0 \leftarrow x_1][x_1 \leftarrow x_2] \cdots [x_{k-1} \leftarrow x_k][x_k \leftarrow 1]
$$

\n
$$
\rightarrow (x_0 t)[x_0 \leftarrow x_1][x_1 \leftarrow x_2] \cdots [x_{k-1} \leftarrow 1][x_k \leftarrow 1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0 \leftarrow 1][x_1 \leftarrow 1] \cdots [x_{k-1} \leftarrow 1][x_k \leftarrow 1]
$$

- Contextual closure: $x[x\leftarrow1] \rightarrow |[x\leftarrow1]$ is non-useful while $x[x \leftarrow 1]y \rightarrow 1[x \leftarrow 1]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow || \rightarrow (xy)[x \leftarrow ||z \leftarrow || \rightarrow (ly)[x \leftarrow ||z \leftarrow ||$ $ightharpoonup$ It is usefull
- Renaming chains:

$$
(x_0 t)[x_0 \leftarrow x_1][x_1 \leftarrow x_2] \cdots [x_{k-1} \leftarrow x_k][x_k \leftarrow 1]
$$

\n
$$
\rightarrow (x_0 t)[x_0 \leftarrow x_1][x_1 \leftarrow x_2] \cdots [x_{k-1} \leftarrow 1][x_k \leftarrow 1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0 \leftarrow 1][x_1 \leftarrow 1] \cdots [x_{k-1} \leftarrow 1][x_k \leftarrow 1]
$$

- Contextual closure: $x[x\leftarrow1] \rightarrow |[x\leftarrow1]$ is non-useful while $x[x \leftarrow 1]y \rightarrow 1[x \leftarrow 1]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow || \rightarrow (xy)[x \leftarrow ||z \leftarrow || \rightarrow (ly)[x \leftarrow ||z \leftarrow ||$ \rightarrow It is (indirectly) useful!
- Renaming chains:

$$
(x_0 t)[x_0+x_1][x_1+x_2]\cdots[x_{k-1}+x_k][x_k-1]
$$

\n
$$
\rightarrow (x_0 t)[x_0+x_1][x_1+x_2]\cdots[x_{k-1}+1][x_k+1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0+1][x_1+1]\cdots[x_{k-1}+1][x_k+1]
$$

- Contextual closure: $x[x\leftarrow1] \rightarrow |[x\leftarrow1]$ is non-useful while $x[x \leftarrow 1]y \rightarrow 1[x \leftarrow 1]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow || \rightarrow (xy)[x \leftarrow ||z \leftarrow || \rightarrow (ly)[x \leftarrow ||z \leftarrow ||$ \rightarrow It is (indirectly) useful!
- Renaming chains:

$$
(x_0 t)[x_0+x_1][x_1+x_2]\cdots [x_{k-1}+x_k][x_k+1]
$$

\n
$$
\rightarrow (x_0 t)[x_0+x_1][x_1+x_2]\cdots [x_{k-1}+1][x_k+1]
$$

\n
$$
\rightarrow^* (x_0 t)[x_0+1][x_1+1]\cdots [x_{k-1}+1][x_k+1]
$$

Positive Focusing is Directly Useful

Focusing

Focusing is a technique first introduced by Andreoli to reduce non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Focusing gives more structure to proofs.

 \rightarrow focused proofs can be seen as a (light) canonical form of proofs.

Focusing

Focusing is a technique first introduced by Andreoli to reduce non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Focusing gives more structure to proofs.

 \rightarrow focused proofs can be seen as a (light) canonical form of proofs.

Focusing

Focusing is a technique first introduced by Andreoli to reduce non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Focusing gives more structure to proofs.

 \rightarrow focused proofs can be seen as a (light) canonical form of proofs.

In a previous work with Dale Miller, we use the focused proof system $LJF₂$ to design term structures.

Formulas are polarized:

- Implications are negative
- Atomic formulas are either negative or postive

We consider the two uniform polarizations δ^- and δ^+ :

-
-

In a previous work with Dale Miller, we use the focused proof system $LJF₂$ to design term structures.

Formulas are polarized:

- Implications are negative
- Atomic formulas are either negative or postive

We consider the two uniform polarizations δ^- and δ^+ :

-
-

In a previous work with Dale Miller, we use the focused proof system $LJF₂$ to design term structures.

Formulas are polarized:

- Implications are negative
- Atomic formulas are either negative or postive

We consider the two uniform polarizations δ^- and δ^+ :

- \bullet δ^- yields the usual tree-like syntax. No sharing within a term. \rightarrow negative/usual λ -terms
- \bullet δ^+ yields a syntax allowing some specific forms of sharing within a term.

 \rightarrow *positive* λ -terms

In a previous work with Dale Miller, we use the focused proof system $LJF₂$ to design term structures.

Formulas are polarized:

- Implications are negative
- Atomic formulas are either negative or postive

We consider the two uniform polarizations δ^- and δ^+ :

- δ^- yields the usual tree-like syntax. No sharing within a term. \rightarrow negative/usual λ -terms
- \bullet δ^+ yields a syntax allowing some specific forms of sharing within a term.

 \rightarrow *positive* λ -terms

In a previous work with Dale Miller, we use the focused proof system $LJF₂$ to design term structures.

Formulas are polarized:

- Implications are negative
- Atomic formulas are either negative or postive

We consider the two uniform polarizations δ^- and δ^+ :

- δ^- yields the usual tree-like syntax. No sharing within a term. \rightarrow negative/usual λ -terms
- \bullet δ^+ yields a syntax allowing some specific forms of sharing within a term.

 \rightarrow *positive* λ -terms

Positive Focusing is Directly Useful

t, u $\equiv x | t[x \leftarrow yz] | t[x \leftarrow \lambda y.u]$

- -
	-

Example of reduction:

$$
\times [x \leftarrow yy][y \leftarrow zz'] [z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oe_+} \times [x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww)])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww)] \\ \times [x \leftarrow w'_1 w'_1][w'_1 \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww)]
$$

t, u $\equiv x | t[x \leftarrow yz] | t[x \leftarrow \lambda y.u]$

● ESs are flattened.

- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
\times [x \leftarrow yy][y \leftarrow zz'] [z \leftarrow \lambda w. w' [w' \leftarrow ww]] \\ \rightarrow_{\text{oe}_+} \times [x \leftarrow yy][y \leftarrow (\lambda w. w' [w' \leftarrow ww))] z'][z \leftarrow \lambda w. w' [w' \leftarrow ww]] \\ \times [x \leftarrow w'_1 w'_1][w'_1 \leftarrow z'z'] [z \leftarrow \lambda w. w' [w' \leftarrow ww]]
$$

$$
t, u = x | t[x \leftarrow yz] | t[x \leftarrow \lambda y. u]
$$

- ESs are flattened.
- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$
\n
$$
\rightarrow_{oe_+} x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww))]z'][z \leftarrow \lambda w.w'[w' \leftarrow ww)]
$$
\n
$$
x[x \leftarrow w'_1 w'_1][w'_1 \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww)]
$$

$$
t, u = x | t[x \leftarrow yz] | t[x \leftarrow \lambda y. u]
$$

- ESs are flattened.
- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
\begin{array}{lll}\n\mathbf{x}[\mathbf{x} \leftarrow \mathbf{y}\mathbf{y}][\mathbf{y} \leftarrow \mathbf{z}\mathbf{z}'][\mathbf{z} \leftarrow \lambda \mathbf{w}.\mathbf{w}'[\mathbf{w}' \leftarrow \mathbf{w}\mathbf{w}]] \\
\rightarrow_{\text{oe}_{+}} & x[x \leftarrow \text{y}\mathbf{y}][\mathbf{y} \leftarrow (\lambda \mathbf{w}.\mathbf{w}'[\mathbf{w}' \leftarrow \mathbf{w}\mathbf{w}])\mathbf{z}'][\mathbf{z} \leftarrow \lambda \mathbf{w}.\mathbf{w}'[\mathbf{w}' \leftarrow \mathbf{w}\mathbf{w}]] \\
\rightarrow_{\text{om}_{+}} & x[x \leftarrow \mathbf{w}'_1 \mathbf{w}'_1][\mathbf{w}'_1 \leftarrow \mathbf{z}'\mathbf{z}'][\mathbf{z} \leftarrow \lambda \mathbf{w}.\mathbf{w}'[\mathbf{w}' \leftarrow \mathbf{w}\mathbf{w}]]\n\end{array}
$$

$$
t, u = x | t[x \leftarrow yz] | t[x \leftarrow \lambda y. u]
$$

- ESs are flattened.
- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
\begin{array}{lll}\n\mathbf{x}[\mathbf{x} \leftarrow \mathbf{y} \mathbf{y}][\mathbf{y} \leftarrow \mathbf{z} \mathbf{z}'][\mathbf{z} \leftarrow \lambda \mathbf{w}.\mathbf{w}'[\mathbf{w}' \leftarrow \mathbf{w} \mathbf{w}]] \\
\rightarrow_{\text{oe}\downarrow} & x[x \leftarrow \mathbf{y} \mathbf{y}][\mathbf{y} \leftarrow (\lambda \mathbf{w}.\mathbf{w}'[\mathbf{w}' \leftarrow \mathbf{w} \mathbf{w}]) \mathbf{z}'][\mathbf{z} \leftarrow \lambda \mathbf{w}.\mathbf{w}'[\mathbf{w}' \leftarrow \mathbf{w} \mathbf{w}]] \\
\rightarrow_{\text{om}\downarrow} & x[x \leftarrow \mathbf{w}'_1 \mathbf{w}'_1][\mathbf{w}'_1 \leftarrow \mathbf{z}' \mathbf{z}'][\mathbf{z} \leftarrow \lambda \mathbf{w}.\mathbf{w}'[\mathbf{w}' \leftarrow \mathbf{w} \mathbf{w}]]\n\end{array}
$$

$$
t, u = x | t[x \leftarrow yz] | t[x \leftarrow \lambda y. u]
$$

- ESs are flattened.
- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
x[x \leftarrow yy][y \leftarrow zz'] [z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

\n
$$
\rightarrow_{oe_{+}} x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'] [z \leftarrow \lambda w.w'[w' \leftarrow ww)]
$$

\n
$$
\rightarrow_{on_{+}} x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

$$
t, u = x | t[x \leftarrow yz] | t[x \leftarrow \lambda y. u]
$$

- ESs are flattened.
- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

\n
$$
\rightarrow_{oe_{+}} x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww)]
$$

\n
$$
\rightarrow_{on_{+}} x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

$$
t, u = x | t[x \leftarrow yz] | t[x \leftarrow \lambda y. u]
$$

- ESs are flattened.
- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$
\n
$$
\rightarrow_{oe_{+}} x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$
\n
$$
\rightarrow_{oem_{+}} x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

Explicit positive λ -calculus λ_{xnos}

$$
t, u = x | t[x \leftarrow yz] | t[x \leftarrow \lambda y. u] | t[x \leftarrow (\lambda y. u)z]
$$

- ESs are flattened.
- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

\n
$$
\rightarrow_{oe_{+}} x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww)]
$$

\n
$$
\rightarrow_{on_{+}} x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

Explicit positive λ -calculus λ_{xnos}

$$
t, u = x | t[x \leftarrow yz] | t[x \leftarrow \lambda y. u] | t[x \leftarrow (\lambda y. u)z]
$$

- ESs are flattened.
- Restricted form of explicit substitutions:
	- 1. Minimalistic application yz
	- 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$
x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

\n
$$
\rightarrow_{oe_{+}} x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww)]
$$

\n
$$
\rightarrow_{on_{+}} x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]]
$$

t, u $\equiv v | \text{tu} | t [x \leftarrow u]$ $v \coloneqq x \mid \lambda x.t$

There are two rules in λ_{vac} :

$$
\begin{array}{ccc}\nt, u & ::= & v | tu | t[x \leftarrow u] \\
v & ::= & x | \lambda x.t\n\end{array}
$$

\bullet General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λ_{vac} :

$$
\begin{array}{ccc}\nt, u & ::= & v | tu | t[x \leftarrow u] \\
v & ::= & x | \lambda x.t\n\end{array}
$$

- \bullet General applications tu
- Variables are values and ES for variable: renaming chains do exist...

There are two rules in λ_{vsc} :

$$
\begin{array}{ccc}\nt, u & ::= & v | tu | t[x \leftarrow u] \\
v & ::= & x | \lambda x.t\n\end{array}
$$

- General applications tu
- Variables are values and ES for variable: renaming chains do exist...

There are two rules in λ_{vac} :

• The *m*-rule fires a β -redex and creates an ES

 $(\lambda x.t)u \rightarrow t[x\leftarrow u]$

• The e-rule fires an ES (of values) and makes a substitution

$$
\begin{array}{ccc}\nt, u & ::= & v | tu | t[x \leftarrow u] \\
v & ::= & x | \lambda x.t\n\end{array}
$$

- General applications tu
- Variables are values and ES for variable: renaming chains do exist...

There are two rules in λ_{vac} :

• The *m*-rule fires a β -redex and creates an ES

$$
(\lambda x.t)u \to t[x\leftarrow u]
$$

• The e-rule fires an ES (of values) and makes a substitution

$$
\begin{array}{rcl}\nt, u & ::= & v | tu | t [x \leftarrow u] \\
v & ::= & x | \lambda x. t\n\end{array}
$$

- General applications tu
- Variables are values and ES for variable: renaming chains do exist...

There are two rules in λ_{vac} :

• The *m*-rule fires a β -redex and creates an ES

$$
(\lambda x.t)u \to t[x\leftarrow u]
$$

• The e-rule fires an ES (of values) and makes a substitution

$$
C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]
$$

$$
\begin{array}{rcl}\nt, u & ::= & v | tu | t [x \leftarrow u] \\
v & ::= & x | \lambda x. t\n\end{array}
$$

- General applications tu
- Variables are values and ES for variable: renaming chains do exist...

There are two rules in λ_{vac} :

• The *m*-rule fires a β -redex and creates an ES

$$
(\lambda x.t)u \to t[x \leftarrow u]
$$

• The e-rule fires an ES (of values) and makes a substitution

$$
C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]
$$

$$
\begin{array}{ccc}\nt, u & ::= & v | tu | t[x \leftarrow u] \\
v & ::= & x | \lambda x.t\n\end{array}
$$

- General applications tu
- Variables are values and ES for variable: renaming chains do exist...

There are two rules in λ_{vac} :

• The *m*-rule fires a β -redex and creates an ES

$$
(\lambda x.t)u \to t[x\leftarrow u]
$$

• The e-rule fires an ES (of values) and makes a substitution

$$
C\langle x\rangle[x\leftarrow v]\rightarrow C\langle v\rangle[x\leftarrow v]
$$

Positive Focusing is Directly Useful

Dissecting λ_{vsc}

λ_{xpos} is directly useful while λ_{vsc} is not.

In order to relate λ_{vsc} to λ_{xnos} , we define a core calculus of λ_{vsc} which is essentially equivalent to λ_{vac} and captures direct usefulness.

Step 1: Separate *e*-rules for variables $(\rightarrow_{\mathsf{e}_{\mathsf{var}}})$ and abstractions $(\rightarrow_{\mathsf{e}_{\mathsf{abs}}})$.

Step 2: Distinguish (directly) useful *e-*steps $(\rightarrow_{\mathsf{e}_\mathsf{u}})$ from non useful e-steps $(\rightarrow_{e_{nu}})$ for abstractions.

Core reduction = $\rightarrow_m + \rightarrow_{e_{\text{max}}} + \rightarrow_{e_{\text{max}}}$

Non-useful reduction $=$ \rightarrow _{enu}

Dissecting λ_{vsc}

 λ_{xpos} is directly useful while λ_{vsc} is not.

In order to relate λ_{vsc} to λ_{xnos} , we define a core calculus of λ_{vsc} which is essentially equivalent to λ_{vsc} and captures direct usefulness.

Step 1: Separate *e*-rules for variables $(\rightarrow_{\mathsf{e}_{\mathsf{var}}})$ and abstractions $(\rightarrow_{\mathsf{e}_{\mathsf{abs}}})$.

Step 2: Distinguish (directly) useful *e-*steps $(\rightarrow_{\mathsf{e}_\mathsf{u}})$ from non useful e-steps $(\rightarrow_{e_{nu}})$ for abstractions.

Core reduction = $\rightarrow_m + \rightarrow_{e_{\text{max}}} + \rightarrow_{e_{\text{max}}}$

Non-useful reduction $=$ \rightarrow _{enu}
Dissecting λ_{vsc}

 λ_{xpos} is directly useful while λ_{vac} is not.

In order to relate λ_{vsc} to λ_{xnos} , we define a core calculus of λ_{vsc} which is essentially equivalent to λ_{vac} and captures direct usefulness.

Step 1: Separate *e*-rules for variables $(\rightarrow_{\text{e}_{\text{var}}})$ and abstractions $(\rightarrow_{\text{e}_{\text{abs}}})$.

Step 2: Distinguish (directly) useful *e-*steps $(\rightarrow_{\mathsf{e}_\mathsf{u}})$ from non useful e-steps $(\rightarrow_{e_{nu}})$ for abstractions.

Core reduction $=\rightarrow_m + \rightarrow_{e_{\text{corr}}} + \rightarrow_{e_{\text{u}}}$

Non-useful reduction $=$ \rightarrow _{enu}

Dissecting λ_{usc}

 λ_{xpos} is directly useful while λ_{vac} is not.

In order to relate λ_{vsc} to λ_{xnos} , we define a core calculus of λ_{vsc} which is essentially equivalent to λ_{vac} and captures direct usefulness.

Step 1: Separate *e*-rules for variables $(\rightarrow_{\text{e}_{\text{var}}})$ and abstractions $(\rightarrow_{\text{e}_{\text{abs}}})$.

Step 2: Distinguish (directly) useful *e-*steps $(\rightarrow_{\mathsf{e}_\mathsf{u}})$ from non useful e-steps $(\rightarrow_{e_{nu}})$ for abstractions.

Core reduction $=\rightarrow_m + \rightarrow_{e_{mn}} + \rightarrow_{e_n}$

Non-useful reduction $=$ \rightarrow _{enu}

Dissecting λ_{usc}

 λ_{xpos} is directly useful while λ_{vac} is not.

In order to relate λ_{vsc} to λ_{xnos} , we define a core calculus of λ_{vsc} which is essentially equivalent to λ_{vac} and captures direct usefulness.

Step 1: Separate *e*-rules for variables $(\rightarrow_{\text{e}_{\text{var}}})$ and abstractions $(\rightarrow_{\text{e}_{\text{abs}}})$.

Step 2: Distinguish (directly) useful *e-*steps $(\rightarrow_{\mathsf{e}_\mathsf{u}})$ from non useful e-steps $(\rightarrow_{e_{nu}})$ for abstractions.

Core reduction $=\rightarrow_{m} + \rightarrow_{e_{\text{var}}} + \rightarrow_{e_{\text{u}}}$

Non-useful reduction $=$ \rightarrow _{enu}

Dissecting λ_{usc}

 λ_{xpos} is directly useful while λ_{vac} is not.

In order to relate λ_{vsc} to λ_{xnos} , we define a core calculus of λ_{vsc} which is essentially equivalent to λ_{vac} and captures direct usefulness.

Step 1: Separate *e*-rules for variables $(\rightarrow_{\text{e}_{\text{var}}})$ and abstractions $(\rightarrow_{\text{e}_{\text{abs}}})$.

Step 2: Distinguish (directly) useful *e-*steps $(\rightarrow_{\mathsf{e}_\mathsf{u}})$ from non useful e-steps $(\rightarrow_{e_{nu}})$ for abstractions.

Core reduction $=\rightarrow_m + \rightarrow_{e_{mn}} + \rightarrow_{e_m}$

Non-useful reduction $=$ $\rightarrow_{e_{nn}}$

Positive Focusing is Directly Useful

 λ_{ovsc} (= Core λ_{ovsc} + Non-useful)

t

 λ_{ovsc} (= Core λ_{ovsc} + Non-useful)

 t' ′ [∗] u

 λ_{ovsc} (= Core λ_{ovsc} + Non-useful)

Conclusion and Future work

- We show that the compactness of λ_{pos} allows one to capture the essence of usefulness. What is remarkable is that λ_{pos} is an outcome of a study of term representation inspired by focusing.
- Future work:
	- 1. efficient implementation of meta-level renamings involved in λ_{pos} . We expect this to be doable in an efficient way via an appropriate abstract machine.
	- 2. λ_{pos} for call-by-need evaluation

Conclusion and Future work

• We show that the compactness of λ_{pos} allows one to capture the essence of usefulness. What is remarkable is that λ_{pos} is an outcome of a study of term representation inspired by focusing.

● Future work:

- 1. efficient implementation of meta-level renamings involved in λ_{pos} . We expect this to be doable in an efficient way via an appropriate abstract machine.
- 2. λ_{pos} for call-by-need evaluation

Conclusion and Future work

- We show that the compactness of λ_{pos} allows one to capture the essence of usefulness. What is remarkable is that λ_{pos} is an outcome of a study of term representation inspired by focusing.
- Future work:
	- 1. efficient implementation of meta-level renamings involved in λ_{pos} . We expect this to be doable in an efficient way via an appropriate abstract machine.
	- 2. λ_{pos} for call-by-need evaluation

Thank you for your attention!