
Typed Non-determinism in
Concurrent Calculi: The Eager Way

Daniele Nantes
Imperial College London (UK)

Joint work with
Joseph Paulus (University of Oxford, UK)

Bas van den Heuvel (Karlsruhe Univ. of Applied Sciences, GER)
Jorge A. Pérez (Univ. of Groningen, NL)

Mathematical Foundations in Program Semantics (MFPS)

Our Work
We explore the delicate interplay of non-determinism, and resource
management (linearity!), across functional and concurrent programming
calculi and under session types and intersection types disciplines.

A session type describes a protocol used by communicating processes.

e.g. x : A means “x should conform to the protocol specified by the
session type A”

Goals:
▶ To improve over prior works that used confluent non-determinism

(FSCD21, TYPES21) and non-confluent non-determinism
(APLAS’23), among others.

▶ To design expressive session typed π-calculi with non-deterministic
choice, and that use types to control resources.

Typed Non-determinism in Concurrent Calculi: The Eager Way 2 / 27

Our Work
We explore the delicate interplay of non-determinism, and resource
management (linearity!), across functional and concurrent programming
calculi and under session types and intersection types disciplines.

A session type describes a protocol used by communicating processes.

e.g. x : A means “x should conform to the protocol specified by the
session type A”

Goals:
▶ To improve over prior works that used confluent non-determinism

(FSCD21, TYPES21) and non-confluent non-determinism
(APLAS’23), among others.

▶ To design expressive session typed π-calculi with non-deterministic
choice, and that use types to control resources.

Typed Non-determinism in Concurrent Calculi: The Eager Way 2 / 27

Our Work
We explore the delicate interplay of non-determinism, and resource
management (linearity!), across functional and concurrent programming
calculi and under session types and intersection types disciplines.

A session type describes a protocol used by communicating processes.

e.g. x : A means “x should conform to the protocol specified by the
session type A”

Goals:
▶ To improve over prior works that used confluent non-determinism

(FSCD21, TYPES21) and non-confluent non-determinism
(APLAS’23), among others.

▶ To design expressive session typed π-calculi with non-deterministic
choice, and that use types to control resources.

Typed Non-determinism in Concurrent Calculi: The Eager Way 2 / 27

Our Work

We present:
▶ A π-calculus with standard (non-confluent) nondeterministic choice

and failure behaviour featuring an eager semantics.
▶ A (session) type system which ensures type preservation and

deadlock-freedom (processes never get stuck).
▶ An intersection-typed resource λ-calculus with non-deterministic

fetching of resources from bags.
▶ A translation between these typed calculi with loose correctness

results (type preservation, operational correspondence).

Typed Non-determinism in Concurrent Calculi: The Eager Way 3 / 27

Non-determinism

Non-determinism is when reductions may introduce multiple behaviors.

Reductions may be confluent:

P1 −→ Q1 , P2 −→ Q2

then

P1 + P2 −→ Q1 + P2 and P1 + P2 −→ P1 +Q2

But standard non-determinism is non-confluent:

P +Q −→ P or P +Q −→ Q

Typed Non-determinism in Concurrent Calculi: The Eager Way 4 / 27

Non-determinism

Non-determinism is when reductions may introduce multiple behaviors.
Reductions may be confluent:

P1 −→ Q1 , P2 −→ Q2

then

P1 + P2 −→ Q1 + P2 and P1 + P2 −→ P1 +Q2

But standard non-determinism is non-confluent:

P +Q −→ P or P +Q −→ Q

Typed Non-determinism in Concurrent Calculi: The Eager Way 4 / 27

Non-determinism

Non-determinism is when reductions may introduce multiple behaviors.
Reductions may be confluent:

P1 −→ Q1 , P2 −→ Q2

then

P1 + P2 −→ Q1 + P2 and P1 + P2 −→ P1 +Q2

But standard non-determinism is non-confluent:

P +Q −→ P or P +Q −→ Q

Typed Non-determinism in Concurrent Calculi: The Eager Way 4 / 27

Motivation for Non-Confluence

▶ Non-confluent non-determinism is of undiscussed convenience in
formal modeling. For instance, in specifications of distributed
protocols commitment is essential.

▶ Non-confluent non-deterministic choice is commonplace in
verification frameworks such as mCRL2.

▶ It is also relevant in functional calculi; a well-known framework is
de’Liguoro and Piperno’s (untyped) non-deterministic λ-calculus.

▶ Challenge: Interplay between non-confluent non-determinism and
resource management (linearity).

Typed Non-determinism in Concurrent Calculi: The Eager Way 5 / 27

Motivation for Non-Confluence

▶ Non-confluent non-determinism is of undiscussed convenience in
formal modeling. For instance, in specifications of distributed
protocols commitment is essential.

▶ Non-confluent non-deterministic choice is commonplace in
verification frameworks such as mCRL2.

▶ It is also relevant in functional calculi; a well-known framework is
de’Liguoro and Piperno’s (untyped) non-deterministic λ-calculus.

▶ Challenge: Interplay between non-confluent non-determinism and
resource management (linearity).

Typed Non-determinism in Concurrent Calculi: The Eager Way 5 / 27

Motivation for Non-Confluence

▶ Non-confluent non-determinism is of undiscussed convenience in
formal modeling. For instance, in specifications of distributed
protocols commitment is essential.

▶ Non-confluent non-deterministic choice is commonplace in
verification frameworks such as mCRL2.

▶ It is also relevant in functional calculi; a well-known framework is
de’Liguoro and Piperno’s (untyped) non-deterministic λ-calculus.

▶ Challenge: Interplay between non-confluent non-determinism and
resource management (linearity).

Typed Non-determinism in Concurrent Calculi: The Eager Way 5 / 27

Motivation for Non-Confluence

▶ Non-confluent non-determinism is of undiscussed convenience in
formal modeling. For instance, in specifications of distributed
protocols commitment is essential.

▶ Non-confluent non-deterministic choice is commonplace in
verification frameworks such as mCRL2.

▶ It is also relevant in functional calculi; a well-known framework is
de’Liguoro and Piperno’s (untyped) non-deterministic λ-calculus.

▶ Challenge: Interplay between non-confluent non-determinism and
resource management (linearity).

Typed Non-determinism in Concurrent Calculi: The Eager Way 5 / 27

Our Contributions

We study new concurrent and functional calculi with usual
(non-confluent) forms of non-determinism.
▶ The concurrent calculus sπ!:

A π-calculus with non-deterministic choice, governed by session
types.

▶ The functional calculus λC:
A resource λ-calculus, governed by intersection types, in which
non-determinism concerns fetching of resources from bags.

▶ A correct translation of λC into sπ!:
Formal connections for non-determinism across paradigms.

Typed Non-determinism in Concurrent Calculi: The Eager Way 6 / 27

Non-Determinism in sπ!

P ||−Q denotes the non-deterministic choice between P and Q :
if one branch can perform a synchronisation, the other branch may be
discarded if it cannot.

Consider the usual reduction axiom for the (untyped) π-calculus:

(x [z];P1 +M1) | (x (y);P2 +M2) −→ P1 | P2{z/y}

Typed Non-determinism in Concurrent Calculi: The Eager Way 7 / 27

Non-Determinism in sπ!

P ||−Q denotes the non-deterministic choice between P and Q :
if one branch can perform a synchronisation, the other branch may be
discarded if it cannot.

Consider the usual reduction axiom for the (untyped) π-calculus:

(x [z];P1 +M1) | (x (y);P2 +M2) −→ P1 | P2{z/y}

Typed Non-determinism in Concurrent Calculi: The Eager Way 7 / 27

Example: A Server and a Non-Deterministic Client

MovieSs := s(title); s.case

8><>:buy : s.case

(
card : s(info); s[movie]; s[] ,
cash : s[movie]; s[]

)
peek : s[trailer]; s[]

9>=>;

MovieCs := s[Barbie];

0B@s.buy; s.card; s[visa]; s(movie); s(); 0 ,
||−s.buy; s.cash; s(movie); s(); 0
||−s.peek; s(link); s(); 0 ,

1CA

Typed Non-determinism in Concurrent Calculi: The Eager Way 8 / 27

Example: A Server and a Non-Deterministic Client

MovieSs := s(title); s.case

8><>:buy : s.case

(
card : s(info); s[movie]; s[] ,
cash : s[movie]; s[]

)
peek : s[trailer]; s[]

9>=>;

MovieCs := s[Barbie];

0B@s.buy; s.card; s[visa]; s(movie); s(); 0 ,
||−s.buy; s.cash; s(movie); s(); 0
||−s.peek; s(link); s(); 0 ,

1CA

Typed Non-determinism in Concurrent Calculi: The Eager Way 8 / 27

Example: A Server and a Non-Deterministic Client

MovieSs := s(title); s.case

8><>:buy : s.case

(
card : s(info); s[movie]; s[] ,
cash : s[movie]; s[]

)
peek : s[trailer]; s[]

9>=>;

MovieCs := s[Barbie];

0B@s.buy; s.card; s[visa]; s(movie); s(); 0 ,
||−s.buy; s.cash; s(movie); s(); 0
||−s.peek; s(link); s(); 0 ,

1CA

Typed Non-determinism in Concurrent Calculi: The Eager Way 8 / 27

Example: A Server and a Non-Deterministic Client

MovieSs := s(title); s.case

8><>:buy : s.case

(
card : s(info); s[movie]; s[] ,
cash : s[movie]; s[]

)
peek : s[trailer]; s[]

9>=>;

MovieCs := s[Barbie];

0B@s.buy; s.card; s[visa]; s(movie); s(); 0 ,
||−s.buy; s.cash; s(movie); s(); 0
||−s.peek; s(link); s(); 0 ,

1CA
(νs)(MovieSs |MovieCs)−→∗

Typed Non-determinism in Concurrent Calculi: The Eager Way 8 / 27

Example: A Server and a Non-Deterministic Client

MovieSs := s(title); s.case

8><>:buy : s.case

(
card : s(info); s[movie]; s[] ,
cash : s[movie]; s[]

)
peek : s[trailer]; s[]

9>=>;

MovieCs := s[Barbie];

0B@s.buy; s.card; s[visa]; s(movie); s(); 0 ,
||−s.buy; s.cash; s(movie); s(); 0
||−s.peek; s(link); s(); 0 ,

1CA

(νs)(MovieSs |MovieCs)−→∗
(νs)(s[trailer]; s[]

| s(link); s(); 0)

Typed Non-determinism in Concurrent Calculi: The Eager Way 8 / 27

Example: A Server and a Non-Deterministic Client

MovieSs := s(title); s.case

8><>:buy : s.case

(
card : s(info); s[movie]; s[] ,
cash : s[movie]; s[]

)
peek : s[trailer]; s[]

9>=>;

MovieCs := s[Barbie];

0B@s.buy; s.card; s[visa]; s(movie); s(); 0 ,
||−s.buy; s.cash; s(movie); s(); 0
||−s.peek; s(link); s(); 0 ,

1CA

(νs)(MovieSs |MovieCs)−→∗
(νs)(s(info); s[movie]; s[]

| s[visa]; s(movie); s(); 0)

Typed Non-determinism in Concurrent Calculi: The Eager Way 8 / 27

Example: A Server and a Non-Deterministic Client

MovieSs := s(title); s.case

8><>:buy : s.case

(
card : s(info); s[movie]; s[] ,
cash : s[movie]; s[]

)
peek : s[trailer]; s[]

9>=>;

MovieCs := s[Barbie];

0B@s.buy; s.card; s[visa]; s(movie); s(); 0 ,
||−s.buy; s.cash; s(movie); s(); 0
||−s.peek; s(link); s(); 0 ,

1CA

(νs)(MovieSs |MovieCs)−→∗
(νs)(s[movie]; s[]

| s(movie); s(); 0)

Typed Non-determinism in Concurrent Calculi: The Eager Way 8 / 27

Our New Calculus sπ! (Excerpt)

P ,Q ::= 0 | [x ↔ y]

| (νx)(P |Q) | P ||−Q

| x [y]; (P |Q) | x (y);P

| x .ℓ;P | x .case{i : P}i∈I
| x [] | x ();P

| x .somew1,...,wn ;P | x .some;P

| P |Q | x .none

Typed Non-determinism in Concurrent Calculi: The Eager Way 9 / 27

Contexts

▶ ND-contexts (N, M):

N, M ::= [·] | N | P | (νx)(N | P) | N ||− P

▶ The commitment of an ND-context N:

L[·]M := [·] LN | P M := LNM | P L(νx)(N | P)M := (νx)(LNM | P)
LN ||− P M := LNM

Typed Non-determinism in Concurrent Calculi: The Eager Way 10 / 27

Key Reduction Rules in sπ!

[�Id] (νx)(N
�
[x ↔ y]

�
|Q)−→ LNM[Q{y/x}]

[�⊗`]
(νx)(N[x [y]; (P |Q)] | N′[x (z);R])−→
LNM
�
(νx)(Q | (νy)(P | LN′M[R{y/z}]))

�
[�⊕&]

∀k ′ ∈ K . (νx)(N[x .k ′;P] | N′[x .case{k : Qk}k∈K])−→
(νx)(LNM[P] | LN′M[Qk ′])

[�ν]
P −→ P ′

(νx)(P |Q)−→ (νx)(P ′ |Q)
[�|]

P −→ P ′

P |Q −→ P ′ |Q

[� ||−]
P −→ P ′

P ||−Q −→ P ′ ||−Q

Typed Non-determinism in Concurrent Calculi: The Eager Way 11 / 27

Session Types for sπ!

Session types in linear logic form (‘propositions-as-sessions’):

A,B ::= 1 | ⊥ | A⊗B | A ` B | ?A | !A
| ⊕{i : A}i∈I | &{i : A}i∈I | &A | ⊕A

Judgments are of the form:
P ⊢ Γ

Typing rules for non-determinism and failure:

[T ||−]
P ⊢ Γ Q ⊢ Γ

P ||−Q ⊢ Γ
[T&some]

P ⊢ Γ, x :A
x .some;P ⊢ Γ, x :&A

[T&none]
x .none ⊢ x :&A

[T⊕some]
P ⊢ &Γ, x :A

x .somedom(Γ);P ⊢ &Γ, x :⊕A

Typed Non-determinism in Concurrent Calculi: The Eager Way 12 / 27

Non-deterministic Resource λ-calculus: λC

M ,N ,L ::= x [∗] | M ⟨⟨B/x ⟩⟩

| (M B) | M ⟨|C/ex |⟩
| λx .M | MTU/xW

| M [ex ← x] failx̃

[∗] ::= [l] | [i] i ∈ N

A,B ::= C ⋆U

U ,V ::= 1! | *M +! | U ⋄V

C ,D ::=1 | * M + ·C

C ::= [·] | (C B) | C⟨|C/ex |⟩ | CTU/xW | C[ex ← x]

Typed Non-determinism in Concurrent Calculi: The Eager Way 13 / 27

Reduction in λC, by Example
Consider the following reductions, where I = λx .(x1[x1 ← x]).

(λx .x1 * x2 * x3 1 + +[ex ← x]) *fail∅, y , I +

−→

(x1*x2*x3 1++[ex ← x])⟨⟨*fail∅, y , I +/x ⟩⟩

−→

(x1*x2*x3 1++)⟨|*fail∅, y , I +/x1, x2, x3|⟩ =M

−→
(fail∅ * x2 * x3 1 + +)⟨| * y , I + /x2, x3|⟩ = N1

M −→ (y * x2 * x3 1 + +)⟨| * fail∅, I + /x2, x3|⟩ = N2−→
(I * x2 * x3 1 + +)⟨| * fail∅, y + /x2, x3|⟩ = N3

Typed Non-determinism in Concurrent Calculi: The Eager Way 14 / 27

Reduction in λC, by Example
Consider the following reductions, where I = λx .(x1[x1 ← x]).

(λx .x1 * x2 * x3 1 + +[ex ← x]) *fail∅, y , I +

−→

(x1*x2*x3 1++[ex ← x])⟨⟨*fail∅, y , I +/x ⟩⟩

−→

(x1*x2*x3 1++)⟨|*fail∅, y , I +/x1, x2, x3|⟩ =M

−→
(fail∅ * x2 * x3 1 + +)⟨| * y , I + /x2, x3|⟩ = N1

M −→ (y * x2 * x3 1 + +)⟨| * fail∅, I + /x2, x3|⟩ = N2−→
(I * x2 * x3 1 + +)⟨| * fail∅, y + /x2, x3|⟩ = N3

Typed Non-determinism in Concurrent Calculi: The Eager Way 14 / 27

Reduction in λC, by Example
Consider the following reductions, where I = λx .(x1[x1 ← x]).

(λx .x1 * x2 * x3 1 + +[ex ← x]) *fail∅, y , I +

−→

(x1*x2*x3 1++[ex ← x])⟨⟨*fail∅, y , I +/x ⟩⟩

−→

(x1*x2*x3 1++)⟨|*fail∅, y , I +/x1, x2, x3|⟩ =M

−→
(fail∅ * x2 * x3 1 + +)⟨| * y , I + /x2, x3|⟩ = N1

M −→ (y * x2 * x3 1 + +)⟨| * fail∅, I + /x2, x3|⟩ = N2−→
(I * x2 * x3 1 + +)⟨| * fail∅, y + /x2, x3|⟩ = N3

Typed Non-determinism in Concurrent Calculi: The Eager Way 14 / 27

Reduction in λC, by Example
Consider the following reductions, where I = λx .(x1[x1 ← x]).

(λx .x1 * x2 * x3 1 + +[ex ← x]) *fail∅, y , I +

−→

(x1*x2*x3 1++[ex ← x])⟨⟨*fail∅, y , I +/x ⟩⟩

−→

(x1*x2*x3 1++)⟨|*fail∅, y , I +/x1, x2, x3|⟩ =M

−→
(fail∅ * x2 * x3 1 + +)⟨| * y , I + /x2, x3|⟩ = N1

M −→ (y * x2 * x3 1 + +)⟨| * fail∅, I + /x2, x3|⟩ = N2−→
(I * x2 * x3 1 + +)⟨| * fail∅, y + /x2, x3|⟩ = N3

Typed Non-determinism in Concurrent Calculi: The Eager Way 14 / 27

Some Reduction Rules for λC

[RS:Beta]

(λx .M) B −→M ⟨⟨B/x ⟩⟩

[RS:Ex-Sub]
size(C) = |ex | M ̸= failỹ

(M [ex ← x])⟨⟨C ⋆U/x ⟩⟩ −→M ⟨|C/ex |⟩TU/xW

[RS:Fetchℓ]
head(M) = xj 0 < i ≤ size(C)

M ⟨|C/ex , xj |⟩ −→ (M{Ci/xj })⟨|(C \Ci)/ex |⟩
[RS:Failℓ]
size(C) ̸= |ex | ey = (lfv(M) \ {ex}) ∪ lfv(C)

(M [ex ← x])⟨⟨C ⋆U/x ⟩⟩ −→ failey
[RS:Fetch!]

head(M) = x [i] Ui = *N +!

MTU/xW−→M{N/x [i]}TU/xW

[RS:Fail!]
head(M) = x [i] Ui = 1!

MTU/xW−→M{fail∅/x [i]}TU/xW

Typed Non-determinism in Concurrent Calculi: The Eager Way 15 / 27

Key Typing Rules

Strict types (σ, τ, δ) and multiset types (π, ζ) are defined as follows:

σ, τ, δ ::= unit | π → σ π, ζ ::=
^
i∈I
σi | ω

η, ϵ ::= σ | ϵ ⋄ η (π, η)

(list) (tuple)

Linear and Unrestricted Type contexts:

Γ,∆ ::= - | Γ, x : π | Γ, x : σ
Θ,Υ ::= - | Θ, x ! : η

Judgments:
Γ ⊨M : τ Γ ⊨ B : π

Typed Non-determinism in Concurrent Calculi: The Eager Way 16 / 27

Translation: Key Ideas

A translation of λC into sπ! is insightful as:
▶ It provides a formal connection of (fail-prone) programs to

(fail-prone) interactive processes.
▶ Relates intersection types into session types.
▶ Shows how non-confluent non-deterministic functional behavior may

be expressed as session-typed protocols in the π-calculus

Typed Non-determinism in Concurrent Calculi: The Eager Way 17 / 27

Translation of Terms

Jx Ku = x .some; [x ↔ u]
Jλx .M Ku = u .some;u(x); JM Ku

J(M C)Ku = (νv)(JM Kv | v .someu ,lfv(C); v [x]; (JC Kx | [v ↔ u]))
JM ⟨⟨C/x ⟩⟩Ku = (νx)(JM Ku | JC Kx)

Typed Non-determinism in Concurrent Calculi: The Eager Way 18 / 27

Translation of Terms

Non-deterministic fetch (λC) codified as non-deterministic choice (sπ!):

JM⟨|*N1,N2+/x1, x2|⟩Ku = (νz1)(z1.somefv(N1); JN1Kz1 |
(νz2)(z2.somefv(N2); JN2Kz2
| ||−xi∈{x1,x2} ||−xj∈{x1,x2\xi}

JM Ku{z1/xi}{z2/xj }))

JM [ex ← x]Ku = x .some; x [yi];
�
yi .some∅; yi(); 0

| x .some; x .someu ,fv(M)\ex ;
||−xi∈ex x (xi); JM [(ex\xi)← x]Ku

�
Jfailx1,...,xk Ku = u .none | x1.none | . . . | xk .none

Typed Non-determinism in Concurrent Calculi: The Eager Way 18 / 27

Translation of Types

Session types give a precise, protocol-oriented abstraction of functional
resources:

JunitK = &1 Jσk → τK = &(Jσk K(σ,i) O JτK)

Jσ ∧ πK(τ,i) = ⊕((&1)O (⊕& ((⊕JσK)⊗ (JπK(τ,i)))))

JωK(σ,i) =

(
⊕((&1)` (⊕& 1)) if i = 0
⊕((&1)` (⊕ & ((⊕JσK)⊗ (JωK(σ,i−1))))) if i > 0

Typed Non-determinism in Concurrent Calculi: The Eager Way 19 / 27

Dynamic Correctness

P ⪰||− P

Pi ⪰||− P ′i i∈{1,2}

P1 ||− P2 ⪰||− P ′i

P ⪰||− P ′ Q ⪰||− Q ′

P |Q ⪰||− P ′ |Q ′

P ⪰||− P ′

(νx)P ⪰||− (νx)P ′

Intuitively, P ⪰||− Q says that P has at least as many branches as Q .

Typed Non-determinism in Concurrent Calculi: The Eager Way 20 / 27

Dynamic Correctness

(Loose Completeness)
If N −→M for a well-formed closed λC-term N , then there
exists Q such that JN Ku −→∗ Q and JM Ku ⪰||− Q .

(Loose Weak Soundness)
If JN Ku −→∗ Q for a well-formed closed λC-term N , then
there exist N ′ and Q ′ such that
(i) N −→∗ N ′ and (ii) Q −→∗ Q ′ with JN ′Ku ⪰||− Q ′.

(Success Sensitivity)
M ⇓ ✓λ iff JM Ku ⇓✓π for well-formed closed terms M .

Typed Non-determinism in Concurrent Calculi: The Eager Way 21 / 27

Dynamic Correctness

(Loose Completeness)
If N −→M for a well-formed closed λC-term N , then there
exists Q such that JN Ku −→∗ Q and JM Ku ⪰||− Q .

(Loose Weak Soundness)
If JN Ku −→∗ Q for a well-formed closed λC-term N , then
there exist N ′ and Q ′ such that
(i) N −→∗ N ′ and (ii) Q −→∗ Q ′ with JN ′Ku ⪰||− Q ′.

(Success Sensitivity)
M ⇓ ✓λ iff JM Ku ⇓✓π for well-formed closed terms M .

Typed Non-determinism in Concurrent Calculi: The Eager Way 21 / 27

Dynamic Correctness

(Loose Completeness)
If N −→M for a well-formed closed λC-term N , then there
exists Q such that JN Ku −→∗ Q and JM Ku ⪰||− Q .

(Loose Weak Soundness)
If JN Ku −→∗ Q for a well-formed closed λC-term N , then
there exist N ′ and Q ′ such that
(i) N −→∗ N ′ and (ii) Q −→∗ Q ′ with JN ′Ku ⪰||− Q ′.

(Success Sensitivity)
M ⇓ ✓λ iff JM Ku ⇓✓π for well-formed closed terms M .

Typed Non-determinism in Concurrent Calculi: The Eager Way 21 / 27

Summary of Technical Results

Results in sπ!

Theorem (Type Preservation)

Theorem (Deadlock-freedom)

Results in λC

Theorem (SR in λC)

Theorem (SE in λC)

Translation correctness from λC to sπ!

Theorem (Translation Preserves Types)

Theorem (Translation correctness under −→)

Typed Non-determinism in Concurrent Calculi: The Eager Way 22 / 27

Summary of Technical Results

Results in sπ!

Theorem (Type Preservation)
If P ⊢ Γ, then both P ≡ Q and P −→Q imply Q ⊢ Γ.

Theorem (Deadlock-freedom)
If P ⊢ ∅ and P ̸≡ 0, then there is R such that P −→R.

Results in λC

Theorem (SR in λC)

Theorem (SE in λC)

Translation correctness from λC to sπ!

Theorem (Translation Preserves Types)

Theorem (Translation correctness under −→)

Typed Non-determinism in Concurrent Calculi: The Eager Way 22 / 27

Summary of Technical Results

Results in sπ!

Theorem (Type Preservation)

Theorem (Deadlock-freedom)

Results in λC

Theorem (SR in λC)
If Θ;Γ ⊨M : τ and M −→M ′, then Θ;Γ ⊨M ′ : τ .

Theorem (SE in λC)
If Θ;Γ ⊢M ′ : τ and M −→M ′, then Θ;Γ ⊢M : τ .

Translation correctness from λC to sπ!

Theorem (Translation Preserves Types)

Theorem (Translation correctness under −→)

Typed Non-determinism in Concurrent Calculi: The Eager Way 22 / 27

Summary of Technical Results
Results in sπ!

Theorem (Type Preservation)

Theorem (Deadlock-freedom)

Results in λC

Theorem (SR in λC)

Theorem (SE in λC)

Translation correctness from λC to sπ!

Theorem (Translation Preserves Types)
1. If Θ;Γ ⊨ B : (σk , η) then JBK ⊢ JΓK,u : J(σk , η)K(σ,i), JΘK .

2. If Θ;Γ ⊨M : τ , then JM Ku ⊢ JΓK,u : JτK, JΘK.

Theorem (Translation correctness under −→)
The translation J · K_ : (Λ,−→)→ (Π,−→) is correct using equivalence ⪰||−.

Typed Non-determinism in Concurrent Calculi: The Eager Way 22 / 27

Discussion

▶ Under −→, non-deterministic choice in sπ! is eager.
▶ Recall the λC example. In M , variables x1, x2, x3 are substituted

non-deterministically in three steps: first one of three substitutions
is chosen for x1, then one of two remaining substitutions is chosen
for x2, then one substitution remains for x3.

▶ In JM K, −→ chooses eagerly: all three choices are made in one step.
▶ Hence, correctness of translation holds up to ⪰||−.

Typed Non-determinism in Concurrent Calculi: The Eager Way 23 / 27

Discussion

APLAS’23: sπ! with lazy semantics that postpones non-deterministic
choice as long as possible; translation is correct up to ≡.

Comparison:
▶ Eager semantics: close to traditional non-determinism in π,

straightforward definition, usual notions of bisimulation
(“α;P + α;Q ̸≃ α; (P +Q)”).

▶ Lazy semantics: more fine-grained non-determinism, complex
definition, unusual notions of bisimulation
(“α;P + α;Q ≃ α; (P +Q)”).

Typed Non-determinism in Concurrent Calculi: The Eager Way 24 / 27

Closing Remarks

We studied the interplay between resource control and non-determinism
in typed calculi.
▶ We introduced two calculi with non-confluent non-determinism, both

equipped with type systems for resource control.
▶ Inspired by the untyped calculus, non-determinism in sπ! is gradual

and explicit, with session types.
▶ In λC, non-determinism arises in the fetching of resources, and is

regulated by intersection types.
▶ A correct translation of λC into sπ! precisely connects their different

forms of non-determinism.
▶ This work reinforces our discovered connection between intersection

and session types.

Typed Non-determinism in Concurrent Calculi: The Eager Way 25 / 27

Typed Non-determinism in
Concurrent Calculi: The Eager Way

Daniele Nantes
Imperial College London (UK)

Joint work with
Joseph Paulus (University of Oxford, UK)

Bas van den Heuvel (Karlsruhe Univ. of Applied Sciences, GER)
Jorge A. Pérez (Univ. of Groningen, NL)

Mathematical Foundations in Program Semantics (MFPS)

