
Typed Non-determinism in
Concurrent Calculi: The Eager Way

Daniele Nantes
Imperial College London (UK)

Joint work with
Joseph Paulus (University of Oxford, UK)

Bas van den Heuvel (Karlsruhe Univ. of Applied Sciences, GER)
Jorge A. Pérez (Univ. of Groningen, NL)

Mathematical Foundations in Program Semantics (MFPS)



Our Work
We explore the delicate interplay of non-determinism, and resource
management (linearity!), across functional and concurrent programming
calculi and under session types and intersection types disciplines.

A session type describes a protocol used by communicating processes.

e.g. x : A means “x should conform to the protocol specified by the
session type A”

Goals:
▶ To improve over prior works that used confluent non-determinism

(FSCD21, TYPES21) and non-confluent non-determinism
(APLAS’23), among others.

▶ To design expressive session typed π-calculi with non-deterministic
choice, and that use types to control resources.
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Our Work

We present:
▶ A π-calculus with standard (non-confluent) nondeterministic choice

and failure behaviour featuring an eager semantics.
▶ A (session) type system which ensures type preservation and

deadlock-freedom (processes never get stuck).
▶ An intersection-typed resource λ-calculus with non-deterministic

fetching of resources from bags.
▶ A translation between these typed calculi with loose correctness

results (type preservation, operational correspondence).
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Non-determinism

Non-determinism is when reductions may introduce multiple behaviors.

Reductions may be confluent:

P1 −→ Q1 , P2 −→ Q2

then

P1 + P2 −→ Q1 + P2 and P1 + P2 −→ P1 +Q2

But standard non-determinism is non-confluent:

P +Q −→ P or P +Q −→ Q
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Motivation for Non-Confluence

▶ Non-confluent non-determinism is of undiscussed convenience in
formal modeling. For instance, in specifications of distributed
protocols commitment is essential.

▶ Non-confluent non-deterministic choice is commonplace in
verification frameworks such as mCRL2.

▶ It is also relevant in functional calculi; a well-known framework is
de’Liguoro and Piperno’s (untyped) non-deterministic λ-calculus.

▶ Challenge: Interplay between non-confluent non-determinism and
resource management (linearity).
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Our Contributions

We study new concurrent and functional calculi with usual
(non-confluent) forms of non-determinism.
▶ The concurrent calculus sπ!:

A π-calculus with non-deterministic choice, governed by session
types.

▶ The functional calculus λC:
A resource λ-calculus, governed by intersection types, in which
non-determinism concerns fetching of resources from bags.

▶ A correct translation of λC into sπ!:
Formal connections for non-determinism across paradigms.
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Non-Determinism in sπ!

P ||−Q denotes the non-deterministic choice between P and Q :
if one branch can perform a synchronisation, the other branch may be
discarded if it cannot.

Consider the usual reduction axiom for the (untyped) π-calculus:

(x [z ];P1 +M1) | (x (y);P2 +M2) −→ P1 | P2{z/y}
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Example: A Server and a Non-Deterministic Client

MovieSs := s(title); s.case

8><>:buy : s.case

(
card : s(info); s[movie]; s[] ,
cash : s[movie]; s[]

)
peek : s[trailer]; s[]

9>=>;

MovieCs := s[Barbie];

0B@s.buy; s.card; s[visa]; s(movie); s(); 0 ,
||−s.buy; s.cash; s(movie); s(); 0
||−s.peek; s(link); s(); 0 ,

1CA
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Our New Calculus sπ! (Excerpt)

P ,Q ::= 0 | [x ↔ y ]

| (νx )(P |Q) | P ||−Q

| x [y ]; (P |Q) | x (y);P

| x .ℓ;P | x .case{i : P}i∈I
| x [] | x ();P

| x .somew1,...,wn ;P | x .some;P

| P |Q | x .none
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Contexts

▶ ND-contexts ( N, M):

N, M ::= [·] | N | P | (νx )(N | P) | N ||− P

▶ The commitment of an ND-context N:

L[·]M := [·] LN | P M := LNM | P L(νx )(N | P)M := (νx )(LNM | P)
LN ||− P M := LNM
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Key Reduction Rules in sπ!

[�Id] (νx )(N
�
[x ↔ y ]

�
|Q)−→ LNM[Q{y/x}]

[�⊗`]
(νx )(N[x [y ]; (P |Q)] | N′[x (z );R])−→
LNM
�
(νx )(Q | (νy)(P | LN′M[R{y/z}]))

�
[�⊕&]

∀k ′ ∈ K . (νx )(N[x .k ′;P ] | N′[x .case{k : Qk}k∈K ])−→
(νx )(LNM[P ] | LN′M[Qk ′ ])

[�ν ]
P −→ P ′

(νx )(P |Q)−→ (νx )(P ′ |Q)
[�|]

P −→ P ′

P |Q −→ P ′ |Q

[� ||−]
P −→ P ′

P ||−Q −→ P ′ ||−Q
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Session Types for sπ!

Session types in linear logic form (‘propositions-as-sessions’):

A,B ::= 1 | ⊥ | A⊗B | A ` B | ?A | !A
| ⊕{i : A}i∈I | &{i : A}i∈I | &A | ⊕A

Judgments are of the form:
P ⊢ Γ

Typing rules for non-determinism and failure:

[T ||−]
P ⊢ Γ Q ⊢ Γ

P ||−Q ⊢ Γ
[T&some]

P ⊢ Γ, x :A
x .some;P ⊢ Γ, x :&A

[T&none]
x .none ⊢ x :&A

[T⊕some]
P ⊢ &Γ, x :A

x .somedom(Γ);P ⊢ &Γ, x :⊕A

Typed Non-determinism in Concurrent Calculi: The Eager Way 12 / 27



Non-deterministic Resource λ-calculus: λC

M ,N ,L ::= x [∗] | M ⟨⟨B/x ⟩⟩

| (M B) | M ⟨|C/ex |⟩
| λx .M | MTU/xW

| M [ex ← x ] failx̃

[∗] ::= [l ] | [i ] i ∈ N

A,B ::= C ⋆U

U ,V ::= 1! | *M +! | U ⋄V

C ,D ::=1 | * M + ·C

C ::= [·] | (C B) | C⟨|C/ex |⟩ | CTU/xW | C[ex ← x ]
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Reduction in λC, by Example
Consider the following reductions, where I = λx .(x1[x1 ← x ]).

(λx .x1 * x2 * x3 1 + +[ex ← x ]) *fail∅, y , I +

−→

(x1*x2*x3 1++[ex ← x ])⟨⟨*fail∅, y , I +/x ⟩⟩

−→

(x1*x2*x3 1++)⟨|*fail∅, y , I +/x1, x2, x3|⟩ =M

−→
(fail∅ * x2 * x3 1 + +)⟨| * y , I + /x2, x3|⟩ = N1

M −→ (y * x2 * x3 1 + +)⟨| * fail∅, I + /x2, x3|⟩ = N2−→
(I * x2 * x3 1 + +)⟨| * fail∅, y + /x2, x3|⟩ = N3
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Some Reduction Rules for λC

[RS:Beta]

(λx .M ) B −→M ⟨⟨B/x ⟩⟩

[RS:Ex-Sub]
size(C ) = |ex | M ̸= failỹ

(M [ex ← x ])⟨⟨C ⋆U/x ⟩⟩ −→M ⟨|C/ex |⟩TU/xW

[RS:Fetchℓ]
head(M ) = xj 0 < i ≤ size(C )

M ⟨|C/ex , xj |⟩ −→ (M{Ci/xj })⟨|(C \Ci)/ex |⟩
[RS:Failℓ]
size(C ) ̸= |ex | ey = (lfv(M ) \ {ex}) ∪ lfv(C )

(M [ex ← x ])⟨⟨C ⋆U/x ⟩⟩ −→ failey
[RS:Fetch!]

head(M ) = x [i ] Ui = *N +!

MTU/xW−→M{N/x [i ]}TU/xW

[RS:Fail!]
head(M ) = x [i ] Ui = 1!

MTU/xW−→M{fail∅/x [i ]}TU/xW
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Key Typing Rules

Strict types (σ, τ, δ) and multiset types (π, ζ) are defined as follows:

σ, τ, δ ::= unit | π → σ π, ζ ::=
^
i∈I
σi | ω

η, ϵ ::= σ | ϵ ⋄ η (π, η)

(list) (tuple)

Linear and Unrestricted Type contexts:

Γ,∆ ::= - | Γ, x : π | Γ, x : σ
Θ,Υ ::= - | Θ, x ! : η

Judgments:
Γ ⊨M : τ Γ ⊨ B : π
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Translation: Key Ideas

A translation of λC into sπ! is insightful as:
▶ It provides a formal connection of (fail-prone) programs to

(fail-prone) interactive processes.
▶ Relates intersection types into session types.
▶ Shows how non-confluent non-deterministic functional behavior may

be expressed as session-typed protocols in the π-calculus
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Translation of Terms

Jx Ku = x .some; [x ↔ u ]
Jλx .M Ku = u .some;u(x ); JM Ku

J(M C )Ku = (νv)(JM Kv | v .someu ,lfv(C ); v [x ]; (JC Kx | [v ↔ u ]))
JM ⟨⟨C/x ⟩⟩Ku = (νx )(JM Ku | JC Kx )

Typed Non-determinism in Concurrent Calculi: The Eager Way 18 / 27



Translation of Terms

Non-deterministic fetch (λC) codified as non-deterministic choice (sπ!):

JM⟨|*N1,N2+/x1, x2|⟩Ku = (νz1)(z1.somefv(N1); JN1Kz1 |
(νz2)(z2.somefv(N2); JN2Kz2
| ||−xi∈{x1,x2} ||−xj∈{x1,x2\xi}

JM Ku{z1/xi}{z2/xj }))

JM [ex ← x ]Ku = x .some; x [yi ];
�
yi .some∅; yi(); 0

| x .some; x .someu ,fv(M )\ex ;
||−xi∈ex x (xi); JM [(ex\xi)← x ]Ku

�
Jfailx1,...,xk Ku = u .none | x1.none | . . . | xk .none

Typed Non-determinism in Concurrent Calculi: The Eager Way 18 / 27



Translation of Types

Session types give a precise, protocol-oriented abstraction of functional
resources:

JunitK = &1 Jσk → τK = &(Jσk K(σ,i) O JτK)

Jσ ∧ πK(τ,i) = ⊕((&1)O (⊕& ((⊕JσK)⊗ (JπK(τ,i)))))

JωK(σ,i) =

(
⊕((&1)` (⊕& 1)) if i = 0
⊕((&1)` (⊕ & ((⊕JσK)⊗ (JωK(σ,i−1))))) if i > 0
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Dynamic Correctness

P ⪰||− P

Pi ⪰||− P ′i i∈{1,2}

P1 ||− P2 ⪰||− P ′i

P ⪰||− P ′ Q ⪰||− Q ′

P |Q ⪰||− P ′ |Q ′

P ⪰||− P ′

(νx )P ⪰||− (νx )P ′

Intuitively, P ⪰||− Q says that P has at least as many branches as Q .
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Dynamic Correctness

(Loose Completeness)
If N −→M for a well-formed closed λC-term N , then there
exists Q such that JN Ku −→∗ Q and JM Ku ⪰||− Q .

(Loose Weak Soundness)
If JN Ku −→∗ Q for a well-formed closed λC-term N , then
there exist N ′ and Q ′ such that
(i) N −→∗ N ′ and (ii) Q −→∗ Q ′ with JN ′Ku ⪰||− Q ′.

(Success Sensitivity)
M ⇓ ✓λ iff JM Ku ⇓✓π for well-formed closed terms M .
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Summary of Technical Results

Results in sπ!

Theorem (Type Preservation)

Theorem (Deadlock-freedom)

Results in λC

Theorem (SR in λC)

Theorem (SE in λC)

Translation correctness from λC to sπ!

Theorem (Translation Preserves Types)

Theorem (Translation correctness under −→)
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Summary of Technical Results

Results in sπ!

Theorem (Type Preservation)
If P ⊢ Γ, then both P ≡ Q and P −→Q imply Q ⊢ Γ.

Theorem (Deadlock-freedom)
If P ⊢ ∅ and P ̸≡ 0, then there is R such that P −→R.

Results in λC

Theorem (SR in λC)

Theorem (SE in λC)

Translation correctness from λC to sπ!

Theorem (Translation Preserves Types)

Theorem (Translation correctness under −→)
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Results in sπ!

Theorem (Type Preservation)

Theorem (Deadlock-freedom)

Results in λC

Theorem (SR in λC)
If Θ;Γ ⊨M : τ and M −→M ′, then Θ;Γ ⊨M ′ : τ .

Theorem (SE in λC)
If Θ;Γ ⊢M ′ : τ and M −→M ′, then Θ;Γ ⊢M : τ .

Translation correctness from λC to sπ!

Theorem (Translation Preserves Types)

Theorem (Translation correctness under −→)
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Summary of Technical Results
Results in sπ!

Theorem (Type Preservation)

Theorem (Deadlock-freedom)

Results in λC

Theorem (SR in λC)

Theorem (SE in λC)

Translation correctness from λC to sπ!

Theorem (Translation Preserves Types)
1. If Θ;Γ ⊨ B : (σk , η) then JBK ⊢ JΓK,u : J(σk , η)K(σ,i), JΘK .

2. If Θ;Γ ⊨M : τ , then JM Ku ⊢ JΓK,u : JτK, JΘK.

Theorem (Translation correctness under −→)
The translation J · K_ : (Λ,−→)→ (Π,−→) is correct using equivalence ⪰||−.
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Discussion

▶ Under −→, non-deterministic choice in sπ! is eager.
▶ Recall the λC example. In M , variables x1, x2, x3 are substituted

non-deterministically in three steps: first one of three substitutions
is chosen for x1, then one of two remaining substitutions is chosen
for x2, then one substitution remains for x3.

▶ In JM K, −→ chooses eagerly: all three choices are made in one step.
▶ Hence, correctness of translation holds up to ⪰||−.
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Discussion

APLAS’23: sπ! with lazy semantics that postpones non-deterministic
choice as long as possible; translation is correct up to ≡.

Comparison:
▶ Eager semantics: close to traditional non-determinism in π,

straightforward definition, usual notions of bisimulation
(“α;P + α;Q ̸≃ α; (P +Q)”).

▶ Lazy semantics: more fine-grained non-determinism, complex
definition, unusual notions of bisimulation
(“α;P + α;Q ≃ α; (P +Q)”).
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Closing Remarks

We studied the interplay between resource control and non-determinism
in typed calculi.
▶ We introduced two calculi with non-confluent non-determinism, both

equipped with type systems for resource control.
▶ Inspired by the untyped calculus, non-determinism in sπ! is gradual

and explicit, with session types.
▶ In λC, non-determinism arises in the fetching of resources, and is

regulated by intersection types.
▶ A correct translation of λC into sπ! precisely connects their different

forms of non-determinism.
▶ This work reinforces our discovered connection between intersection

and session types.
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