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Motivation
Featured Transition Systems (FTS): Conditions that come from
configurations of features

login select
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Adding upgrades
Assume that at any moment the configurations may be upgraded.
Upgrades (i.e. relations k′ ≤ k of conditions k, k′) come with an order
and the property that they add possible transitions, i.e. if k′ ≤ k, then
x a,k−−→ y =⇒ x a,k′−−→ y.
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Conditional transition systems
Fix: set X state space; set A of action; finite poset K of conditions (or
configurations in the language of FTS).

Definition
A conditional transition system (CTS) is (X,A,K,→), where
→ ⊆ X × A×K× X is the transition relation (also written x a,k−−→ y)
satisfying :

∀x,y∈X,a∈A,k,k′∈K (x a,k−−→ y ∧ k′ ≤ k) =⇒ x a,k′−−→ y.

Special cases
• For K trivial (singleton): Labelled transition system (LTS).
• For K unordered: featured transition systems.
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Understanding LTSs
For labelled transition system, there are several notions of
equivalences, e.g.

Language equivalence
Fix a set ↓ ⊆ X of terminating states. Two CTSs on X are language
equivalent, if each state admits the same traces, i.e. admissible
actions x1

a1−→ x2
a2−→ . . . → • ∈ ↓.

Other equivalences: ready equivalence, failure equivalence

In terms of category theory
These equivalences can be formulated in terms of final coalgebras in
Kleisli categories.

B(X) B(A∗ + 1)

X A∗ + 1

For
language equivalence (1 = {•}):
X → A∗ + 1 ∈ Kℓ(P)

X → P(A∗ + 1) ∈ Set,
i.e. with for B(X) = A× X + 1:
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The Problem
How to transfer this to the CTS case?

Consider again—for simplicity—the case of language equivalence: We
need to expand

B(X) = A× X + 1 (machine endofunctor)
together with the morphism

X → P(A∗ + 1).

How to incorporate K? Attempt:

K× X → P(A∗ + 1)
(
equiv. X → (P(A∗ + 1))K

)
Doesn’t work either. What we actually need is the type

K× X → P(K× A∗ + 1).

Solution
Let G(X) = K× X. So we have type GX → PGY. This is the type of the
relative monad induced by the monad P and the endofunctor G!
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What is a relative monad?
Let G : C→ C be an endofunctor.
Our presentation of relative monad is an instance of a more general formulation in which G is not necessarily an
endofunctor.

Definition
A G-relative monad comprises the following data:

1. an object mapping T : C→ C;
2. for every object X ∈ C, there is a unit map ηX ∈ C(GX, TX);
3. for every arrow f ∈ C(GX, TY) there is its Kleisli lifting

f ♯ ∈ C(TX, TY) satisfying

left unit law right unit law associativity

GX TX

TY

ηX

f
f♯

TX

TX

η♯
XidTX

TX TZ

TY .

f♯

(g♯◦f )♯

g♯
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Functoriality and Kleisli category

Is T actually a functor? Yes, set Tf = (ηY ◦ G(f ))♯ for f : X → Y in C:

TX TY

GX GY

(ηY◦G(f ))♯

G(f )

ηY .

Kleisli category KℓG(T)
on objects

X ∈ C
X ∈ KℓGT

on morphism

f : GX → TY ∈ C
f : X → Y ∈ KℓGT

identities
ηX ∈ C

idX ∈ KℓGT

composition

GX f−→ TY g♯−→ TX
g • f ∈ KℓGT
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The solution
Given an ordinary monad T = (T, η, (_)♯) and an endofunctor G : C→ C,
we can always construct a relative monad TG = (TG, ηTG , (_)♯) given by

1. TG(X) = TGX for X ∈ C
2. ηT

G

X = ηGX for X ∈ C
3. lifting (Gf )♯ for f : GX → TGY a morphism in C

So what happens for the monad TG? We get Kℓ(TG) = KℓG(TG) given by

on objects

GX ∈ C
X ∈ Kℓ(TG)

on morphism

f : GX → TGY ∈ C
f : X → Y ∈ Kℓ(TG)

identities
ηGX ∈ C

idX ∈ Kℓ(TG)

composition

GX f−→ TGY g♯−→ TGZ
g • f ∈ Kℓ(TG) .

KℓG(T) is what we sought!
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Our Problem

Kℓ(TG) Kℓ(TG)

C C

B̃

L

B

L

Putting our discussions of language (or other
kinds of) equivalences together, we need lifting
of B : C→ C to a functor B̃ : Kℓ(TG) → Kℓ(TG),
i.e. for L : X 7→ X, f 7→ ηcod f ◦ G(f )
the diagram on the right commutes.

Preliminary result
GBX TGBY

BGX TBGY

ρX∼=

B̃f

B̄f
Tρ−1

Y
∼=

If G preserves B, i.e. there is a natural
isomorphism ρ : GB ∼= BG, the
existence of a Kleisli lifting Kℓ(T) B−→ Kℓ(T)
of B implies the existence of a Kleisli lifting
Kℓ(TG) B̃−→ Kℓ(TG) of B as defined on the right.

Unfortunately, too strong conditions on G—take K nontrivial:
GB(X) = K× (A× X + 1) ̸= A×K× X + 1 = BG(X).
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Lifting the machine endofunctor
Our aim is now to construct a Kleisli lifting of the machine endofunctor

B(X) = A× X + O (shorthand A = A× _).

A1 G preserves coproducts.
A2 G preserves A (GA ∼= AG).
A3 A : Kℓ(T) → Kℓ(T) is a Kleisli lifting of A

(thus Ã : Kℓ(TG) → Kℓ(TG) exists).
Provided these axioms we can build a relative Kleisli lifting B̂ by

G(AX + O) TG(AY + O)

GAX + GO TGAY + TGO

B̂f

Ãf+ηGO

GιAX▽GιO ∼= TGιAY▽TGιO

where ▽ :
(
X f−→ Y, X′ f ′−→ Y

)
7→

(
X + X′ f▽f ′−−→ Y

)
given by coproduct.
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(thus Ã : Kℓ(TG) → Kℓ(TG) exists).
Provided these axioms we can build a relative Kleisli lifting B̂ by

G(AX + O) TG(AY + O)

GAX + GO TGAY + TGO

B̂f
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Preservation properties

For this relative Kleisli lifting B̂ we have:

• If G preserves colimits and the initial algebra h : B(µB)
∼=−→ µB of B

exists in C, then Lh : B̂(µB)
∼=−→ µB is the initial algebra of B̂ in

Kℓ(TG).

• By a result of Freyd 1992:
µB is the final coalgebra of (Lh)−1 : µB → B̂(µB) of B̂ in Kℓ(TG).

• The final coalgebra characterises the behaviour of the systems of
interest.
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Constructing Kleisli laws ϑ
TF FT

F

ϑ

ηF
Fη

FTT TFT TTF

FT TF

ϑT

Fµ

Tϑ

µF

ϑ

The crucial point was

A3 A : Kℓ(T) → Kℓ(T) is a Kleisli lifting of A.
Kℓ-law ϑ : FT ⇒ TF

Recall, that a Kℓ-law is a natural transformation
such that the diagram on the right commute.

In applications this will be based on

Set(X,PY)
θX,Y∼= P(X × Y) ∼= Set(X × Y, 2),

Pos(X,P↓Y)
θX,Y∼=

{
R ⊆ X × Y | R is up closed in X,

R is down closed in Y

}
∼= Pos(X × Yo, {0 ≤ 1}︸ ︷︷ ︸

2

),

where P↓ = downset monad and Yo = dual poset of Y.
We can view a Kleisli law ϑX as a relation on PF(X)× F(X) (T = P,P↓).
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For relations
View P as a functor Φ: Set→ Pos or Φ: Pos→ Pos.

Set IX to be X or the dual poset, resp.; and further:

∈X = θPX,X(idPX) ∈ Φ(PX × IX), the element relation
σX : ΦX → Φ(A× X), R 7→ {(a, r) | a ∈ A}, the predicate lifting

Applying predicate lifting we get σPX×IX(∈X) ∈ ΦF(PX × IX); further let

λX,Y = F(prX) △ F(prIY) : F(X × IY) → FX × FIY = FX × IFY

where f △ f ′ is the “diagonal operation” provided by the universal
property of the product on the codomain;

∃f (V) = {x | f (x) ∈ V}, direct image of V ⊆ cod f

ϑX
def
= θ−1

FPX,FX ◦ ∃λPX,X ◦ σPX×IX (∈X) .

Let C ∈ {Set,Pos} and Ω = 2. If F preserves weak pullbacks, then ϑ is a
Kℓ-law.
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λX,Y = F(prX) △ F(prIY) : F(X × IY) → FX × FIY = FX × IFY

where f △ f ′ is the “diagonal operation” provided by the universal
property of the product on the codomain;

∃f (V) = {x | f (x) ∈ V}, direct image of V ⊆ cod f

ϑX
def
= θ−1

FPX,FX ◦ ∃λPX,X ◦ σPX×IX (∈X) .

Let C ∈ {Set,Pos} and Ω = 2. If F preserves weak pullbacks, then ϑ is a
Kℓ-law.
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Axiomatisation
A3.1 There is an indexed category Φ: Cop → Pos (also written Φf = f ∗)

with a bifibration structure, i.e. for each f : X → Y ∈ C there is an
adjoint situation ∃f ⊣ f ∗ : ΦX → ΦY.

A3.2 There is an endofunctor I : C→ C such that F ◦ I = I ◦ F.
A3.3 There is a monad (T, η, µ) on C with the following correspondence

θX,Y : C(X, TY) ∼= Φ(X × IY) (for each X, Y ∈ C)

such that the following diagrams commute for each
f : X → X′,g : Y → Y′ ∈ C.

C(X, TY) Φ(X × IY) C(X, TY) Φ(X × IY)

C(X′, TY) Φ(X′ × IY) C(X, TY′) Φ(X × IY′)

θX,Y

Tg◦_

θX,Y

∃(X×Ig)_◦f
θX′,Y

(f×IY)∗

θX,Y′

.

A3.4 There is an indexed morphism (aka predicate liftings) σ : Φ ⇒ ΦF.
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Kleisli-law ϑ in a general setting
Using θ and axioms A3.1-4 we can repeat the definitions of ϑX from
above.

Further we can abstractly define

∆X = θX,X(ηX), the diagonal

S⊙ R = θX,Z

(
θ−1
Y,Z(S) • θ

−1
X,Y(R)

)
,
relation composition

⊙ : Φ(Y × IZ)× Φ(X × IY) → Φ(X × IZ)
σ̃X,Y = ∃λX,IY ◦ σX×IY , relational predicate lifting

Crucial instance of Beck-Chevalley condition (*)

If
F(X × IY) FX × IFY

F(X′ × IY) FX′ × IFY

F(f×IY)

λX,Y

Ff×IFY

λX′,Y

commutes, so
Φ(F(X × IY)) Φ(FX × IFY)

Φ(F(X′ × IY)) Φ(FX′ × IFY)

(F(f×IY))∗

∃λX,Y

(Ff×IFY)∗

∃λX′,Y

.
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Results in the general setting
Assuming this Beck-Chevalley condition (*):

∃λX,IY ◦ σX×IY(∆X) = ∆FX ⇐⇒
TF FT

F

ϑ

ηF
Fη

σ̃X,Y preserves ⊙ ⇐⇒
FTT TFT TTF

FT TF

ϑT

Fµ

Tϑ

µF

ϑ

Advantages of the abstract approach
• easily verifiable criterion
• further applications like quantitative extensions, e.g. with

probabilities or weights from a semiring.

On Kleisli liftings | Daniel Luckhardt
Page 15/16



Results in the general setting
Assuming this Beck-Chevalley condition (*):

∃λX,IY ◦ σX×IY(∆X) = ∆FX ⇐⇒
TF FT

F

ϑ

ηF
Fη

σ̃X,Y preserves ⊙ ⇐⇒
FTT TFT TTF

FT TF

ϑT

Fµ

Tϑ

µF

ϑ

Advantages of the abstract approach
• easily verifiable criterion
• further applications like quantitative extensions, e.g. with

probabilities or weights from a semiring.

On Kleisli liftings | Daniel Luckhardt
Page 15/16



Concluding remarks

Application to language equivalence
Let I =

{
identity
dual poset

and

c : X → A× X + O ∈ Kℓ(TG) with T ∈ {P,P↓} be a coalgebra.
• Assumption A1, A2 and A3.1-4 are easily checked.
• Case O = 1 gives language equivalence. Thus we can calculate

language equivalence by a final coalgebra.

Finally,
• Same works for ready equivalence.
• Our results extend to Cppo-enrichment.
• further research: quantitative enrichment of transitions
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Relationship among Kℓ(T),
Kℓ(TG), and Kℓ(T)

There is the following relationship between the classical Kℓ(T), KℓG(T)
and Kℓ(TG):

X ηGY ◦ GF Kℓ(TG) Kℓ(T)

X f C C
R

D

R′L

G

L′ ⊣ L′ ⊣ R′ classical adj.
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Cppo-enrichement
Recall: A category C is a Cppo-enriched category whenever its hom-set
forms a ω-cpo with a bottom and the composition of arrows is a
continuous function.

For the preliminary result
Moreover, if B is locally continuous (when Kℓ(T) is Cppo-enriched),
then so is B̃ defined above.

Assuming A1-3
If Kℓ(T) is Cppo-enriched, A is locally continuous, and the operation
_ + g commutes with the ω-directed joins, i.e. for any increasing
families of arrows (fi ∈ Kℓ(T)(X, Z))i∈N we have∨

i∈N

(fi + g) = (
∨
i∈N

fi) + g,

then B̂ is locally continuous.
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Quantitative example
Working in Set take

• Ω the Lawvere quantale ([0, 1],≥) (with r ⊕ r′ = min(r + r′, 1));
• T = PΩ, the Ω-valued powerset monad,

PΩ(X) = ΩX on objects,
Tf (g)(y) = inf f (x)=y g(x) (for f : X → Y) on arrows,
µX(G)(x) = infg∈PΩX G(g)⊕ g(x) multiplication;

• F = D, the distribution monad;
• σX(p)(µ) = Eµ(p) =

∑
x∈X p(x) · µ(x) (for each µ ∈ DX).

The left adjoint ∃λX(M)(µ, ν) = infλX(ω)=(µ,ν)M(ω) computes the optimal
transport between two distributions µ, ν in M.
So using our theorem we obtain a Kℓ-law

ϑX(M)(µ) = inf
λTX,X(ω)=(M,µ)

Eω(∈X) = inf
λDX,X(ω)=(M,µ)

∑
(p,x)∈PΩX×X

p(x) · ω(p, x),

where M ∈ D(PΩX) and µ ∈ D(X).
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