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Motivation



Motivation via Petri nets

Consider the following Petri net:

Recall that a Petri net fundamentally consists of places (drawn as
circles) and transitions (drawn as boxes), where directed edges go
from places to transitions and from transitions to places. 1



Example

It may represent the action at a barbershop
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Tokens

We then place dots called tokens in the places, moving them around
using the transitions. E.g., the marking on the left becomes (upon
firing t1)
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Executions

Altogether, going through certain transitions for the initial marking,
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Execution (continued)

continuing...
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Colored nets

But sometimes we want to distinguish between individual tokens, so
we consider colored nets, which you can think of as assigning sets of
colors to places
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Colored nets

and transition guards to transitions
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Colored nets

In more detail, with guarded (or coloured) nets,

• tokens are endowed with colors or attribute (which depend on
the place of the token),

• each arc is decorated with an expression (modifying tokens’
attributes as they flow through the net),

• each transition is decorated with a predicate and only fires on
tokens whose attributes satisfy the predicate.
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Legend

Think

• blue customers are rich
• red customers are poor

and

• pink represents expensive barber(s)
• gray represents moderately-priced barber(s)
• black represents the boss (who doesn’t cut hair)

and

• green represents a fancy barber seat
• yellow represents a normal chair

and where, e.g.,

• s1 amounts to (customer = one of the rich customers ∧
employee = the expensive barber ∧ barber seat = the fancy one)
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As an unguarded net

Now (via details recalled later in talk), we can convert this
guarded/colored net back into a classical net, first by assigning a
subplace to each color, as follows
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As an unguarded net

and then a distinct transition box for each of the expressions in the
transition guards
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An execution

So, then, given a marking of this net, an execution might look like:
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An execution
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An execution
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Observation 1

Now let’s consider two things. First, consider the green place:

• Essentially, there’s an
obstruction of sorts, where
the same fancy chair may
have sent to it multiple
customer-barber pairs.

• Looking ahead: we can frame
this as a violation of (or
obstruction to) the
uniqueness condition
required for being a discrete
fibration.
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Observation 2

Second, consider the yellow place...

• Essentially, there’s another obstruction of
sorts, where there’s a yellow chair type from
which we release an employee back into the
pool of available barbershop employees, even
when there’s no customer whose hair they
could have been cutting at that chair.

• This suggests the barber was released from
their station at that chair without ever having
served any customer. This is something to
flag, as maybe barbers get paid whenever they
get sent back from a chair into the pool of
available employees. But we only want to pay
barbers that actually cut a customer’s hair!

• Looking ahead: we can frame this as a
violation of the existence condition of being a
discrete fibration.
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Bounded Nets

• Another question that arises for Petri nets brings us to bounded
nets, for which we can isolate similar sorts of ‘obstructions’.

• In such settings, we want to establish when a given Petri net is
bounded, meaning that starting from a given marking, no place
will hold more than a predetermined number of tokens
throughout any possible firing.

• Classically, we can turn any net into a bounded one by
• doubling-up the places adding what we call anti-places (keeping
track of how many tokens we can still add to the place), and

• editing transitions so that each input (output) from (to) a place is
now paired with a corresponding output (input) to (from) the
corresponding anti-place.
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Example

Suppose we start with a simple net as follows:

We then construct a bounded net by taking the places and
doubling-up with anti-places (depicted in purple) and new arcs to
and from transitions turning things around...
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Example bounded net

• E.g., three tokens in the antiplace f̄ means ‘3 more tokens can be
added to f’ (i.e., there are only 3 more barbers that can cut hair).

• Transitions consuming tokens from a place add tokens to the
corresponding antiplace; transitions outputting tokens into a
place need consume equivalent amount from antiplace.
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Observation

Consider the original net

for which we have a particular execution, which can be written down
in two equivalent ways (because our semantics is commutative)

Think: a barber only gets paid when they end a hair cutting; the
owner/balance sheet doesn’t see the difference between the
different ways of writing the execution (money is debited once).
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Unpacking

But this equality is not lifted to the bounded net up top, on account
of the doubled places.

Whereas we could exchange any place c with itself down below
(using commutativity), we cannot do the same up above with ċ and c̄,
the place and antiplace corresponding to c, are considered as
different generators and cannot be swapped one for the other.
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Moral

• Such ‘obstructions’ witness histories that should ‘morally be
identified’ in the category of executions of the bounded net, but
are not.

• In our example: keeping track of bounds on resources (like free
barbers and barbers-on-the-job), the owner must now regard as
distinct histories that really ‘ought to be identified’ (from a
payment perspective, say).

• These can be considered imperfections of the bounding
technique.

22
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Purpose

• These are just a few of the applications where we’re interested
in qualifying obstructions.

• Our paper focused on leveraging some straightforward theory
(combining established facts) to satisfy the goal of qualifying
obstructions to a variety of properties a functor may satisfy,
applying homology directly to the categorical setting.

• Using tools borrowed from homology, we will be able to
measure how much a functor fails to be ‘something’ — a discrete
(op-)fibration, a pseudofunctor, …— depending on context.
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Context

This refines the intuition that topological holes and obstructions to
category-theoretic compositionality should be regarded as two sides
of the same coin.

This work falls within the line of thought that

Motto
compositionality, far from being a universal notion, should be
understood as involving a spectrum of distinct, context-dependent
nuances.

24



Context

This refines the intuition that topological holes and obstructions to
category-theoretic compositionality should be regarded as two sides
of the same coin.

This work falls within the line of thought that

Motto
compositionality, far from being a universal notion, should be
understood as involving a spectrum of distinct, context-dependent
nuances.

24



Basic Set-up: first observations



Observe

Given a(ny flavor of) category C, we can always consider the
following diagram:

. . . C3 C2 C1 C0s
t##l#r

• C0 represents the objects of C,

• C1 represents its morphisms,
• Cn represents n-tuples of morphisms with matching codomain
and domain; e.g., (A f−→ B,B g−→ C) could be an element of C2.
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Unpacking the pieces

• C1 C0s
t

• C2 C1#
• C3 C2

#l#r
• . . . C3

Unpacking the pieces

The arrows s, t represent the usual source and target assignments, s
taking a generic f : A→ B to A, t taking f to B.
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Unpacking the pieces

• C1 C0s
t

• C2 C1#

• C3 C2
#l#r

• . . . C3

Unpacking the pieces

# represents composition, sending the generic pair of compatible
morphisms f : A→ B,g : B→ C to the single morphism f # g : A→ C
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Unpacking the pieces

• C1 C0s
t

• C2 C1#
• C3 C2

#l#r

• . . . C3

Unpacking the pieces

C3 consists of triples (f,g,h) of composable morphisms and the two
maps #l (“compose on the left”) and #r (“compose on the right”) take
such triples of composable morphisms to pairs of morphisms in C2,
i.e., to (f # g,h) or to (f,g # h).
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Unpacking the pieces

• C1 C0s
t

• C2 C1#
• C3 C2

#l#r
• . . . C3

Unpacking the pieces

More generally, there are n different composition mappings from
Cn+1 to Cn, as we can choose to compose any two adjacent
morphisms in a n+ 1-tuple to obtain a n-tuple.
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Main Diagram

Staring at this diagram, one finds a few obvious facts, but nothing of
great interest. Cool things happen when we put two of these
diagrams together. Given a functor F : C→ D, we can consider:

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

sC

tC
#C#lC

#rC

#lD sD

#rD #D
tD

F3 F2 F1 F0

Notice

• F0 is F defined on objects,

• F1 is F defined on morphisms,
• any other Fn acts on n-tuples by applying F1 component-wise.
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Purpose

The purpose of our paper was to focus on these squares, in
particular on the two rightmost ones,

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

#C

#D
F2 F1

#lD
#rD

F3

#lC
#rC

sC

tC

F0

sD

tD

as well as the middle square

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

#C

#D
F2 F1

#lD
#rD

F3

#lC
#rC

sC

tC

F0

sD

tD

to say things about F. 28
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The Rightmost Squares



Breaking it down

We start by focusing on the rightmost square:

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

#C

#D
F2 F1

#lD
#rD

F3

#lC
#rC

sC

tC

F0

sD

tD

Decoupling things, this actually consists of two different squares:

C1 C0 C1 C0

D1 D0 D1 D0

tCsC

sD tD

F1 F0 F1 F0 (1)
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Simple Observation

C1 C0 C1 C0

D1 D0 D1 D0

tCsC

sD tD

F1 F0 F1 F0

• Since functors preserve source and target of morphisms, it
follows that if F : C→ D is a functor, then the two squares above
commute.

• But there’s more...
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Definition

Definition

• A functor F : C→ D is a discrete fibration if for each C ∈ C and
fD : D→ F0(C), there exists a unique fC : C′ → C such that
F1(fC) = fD (and thus also F0(C′) = D).

• In a picture,
C ∀C

D D F(C)

F

∀f

• then there’s a unique lifting of f to a morphism above

C C′ C

D D F(C)

F

∃!e

F(e)=f

32



Definition

Definition

• A functor F : C→ D is a discrete fibration if for each C ∈ C and
fD : D→ F0(C), there exists a unique fC : C′ → C such that
F1(fC) = fD (and thus also F0(C′) = D).

• In a picture,
C ∀C

D D F(C)

F

∀f

• then there’s a unique lifting of f to a morphism above

C C′ C

D D F(C)

F

∃!e

F(e)=f

32



Definition

Definition

• A functor F : C→ D is a discrete fibration if for each C ∈ C and
fD : D→ F0(C), there exists a unique fC : C′ → C such that
F1(fC) = fD (and thus also F0(C′) = D).

• In a picture,
C ∀C

D D F(C)

F

∀f

• then there’s a unique lifting of f to a morphism above

C C′ C

D D F(C)

F

∃!e

F(e)=f
32



Definition

Similarly,

Definition

• A functor F : C→ D is a discrete opfibration if for each C ∈ C0
and fD : F0(C) → D′, there exists a unique fC : C→ C′ such that
F1(fC) = fD.

33



Proposition (giving an “internal” reformulation of the definition)

Proposition 1
Let F : C→ D be a functor. The right square in Equation (1)

C1 C0 C1 C0

D1 D0 D1 D0

tCsC

sD tD

F1 F0 F1 F0

is a pullback square if and only if F is a discrete fibration.

Similarly, the left square is a pullback if and only if F is a discrete
opfibration.

The content of Proposition 1 can be refined. Indeed, one can qualify
how much F fails to be a discrete (op-)fibration.
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Idea

Let’s first rewrite the diagrams in Equation (1); focus on leftmost:
C1

C0 × D1 C0

D1 D0

(sC,F1)

sC

F1
π1

π2
F̃0

s̃D
F0

sD

We can thus come to rewrite each of the diagrams in Equation (1) as:

C1 C0 × D1 D0 C1 C0 × D1 D0
F̃0(sC,F1)

s̃D

(tC,F1) F̃0

t̃D

If F is a functor, these diagrams commute.
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Homology Groups

• Now we apply the left adjoint Set→ AbGrp to them.

• This means replacing all sets with the abelian groups freely
generated by them, and all functions with the corresponding
homomorphisms.

• Now homomorphisms can be summed and inverted pointwise,
and we write:

0 C1 C0 × D1 D0 0 C1 C0 × D1 D0
F̃0−s̃D(sC,F1) F̃0−t̃D(tC,F1)

• Since the original diagram commutes, (sC, F1) equalizes F̃0 and
s̃D, and so the composition above evaluates to 0, implying
Im (sC, F1) ⊆ ker (F̃0 − s̃D).

• This places us into homology land, and we define:

Definition (Homology DFib Groups)

H−1
opfib := ker (sC, F1) H0opfib := ker (F̃0 − s̃D)/ Im (sC, F1)

H−1
fib := ker (tC, F1) H0fib := ker (F̃0 − t̃D)/ Im (tC, F1).

36
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• Now we apply the left adjoint Set→ AbGrp to them.
• This means replacing all sets with the abelian groups freely
generated by them, and all functions with the corresponding
homomorphisms.

• Now homomorphisms can be summed and inverted pointwise,
and we write:

0 C1 C0 × D1 D0 0 C1 C0 × D1 D0
F̃0−s̃D(sC,F1) F̃0−t̃D(tC,F1)
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Moral

• These groups provide a qualitative description of the
obstructions for the diagrams in Equation (1) being a pullback.

• When they are trivial there are no obstructions. With Prop 1, get

Proposition 2
Let F : C→ D be a functor. H−1

fib ,H0fib are trivial if and only if F is a
discrete fibration. Similarly, H−1

opfib,H0opfib are trivial if and only if F is
a discrete opfibration.

• Proof (take d.o.f. case) is by def of equalizer,

0 C1 C0 × D1 D0

Eq(F̃0 − s̃D)

(sC,F1)

k

F̃0−s̃D

H0opfib is trivial iff k surjective; H
−1
opfib trivial iff k injective. So

H−1
opfib,H0opfib are trivial iff C1 ≃ Eq(F̃0, s̃D), which by def holds iff

the corresponding square in Prop 1 is a pullback iff F is d.o.f.
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The Middle Square



Next Step

The middle square is probably the most interesting one in our
endeavor.

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

#C

#D
F2 F1

#lD
#rD

F3

#lC
#rC

sC

tC

F0

sD

tD
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Next Step

• It takes a pair of morphisms f : A→ B and g : B→ C in C2, and
maps them to F1(f #C g) (right-down),

• and to F1(f) #D F1(g) (down-right).

f,g f #C g
C2 C1

D2 D1 F1(f #C g)
F1(f), F1(g) F1(f) #D F1(g)

#C
F2 F1

#D
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Next Step

• Square commutativity states the familiar condition
F(f #C g) = F(f) #D F(g), i.e., the preservation of composition by a
functor F : C→ D.

• More to the point, can also prove

Proposition 3
If either of the squares in Equation (1) is a pullback, then the
following is also a pullback:

C2 C1

D2 D1

#C

#D
F2 F1

• But what does it mean for the middle square to be a pullback?
• As with discrete (op-)fibrations, this corresponds to a
well-known concept.
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Conduché Fibration

Definition
A functor F : C→ D is a Conduché functor if for f : a→ b in C1 and
any factorization F0(a)

v−→ d u−→ F0(b) of F1(f) : F0(a) → F0(b) in D:

• There exists a factorization a h−→ c g−→ b of f : a→ b in C such that
F1(g) = u and F1(h) = v.

• Such a factorization is unique up to equalivalence, i.e., any two
such factorizations g ◦ h = g′ ◦ h′ in C are equivalent if there
exists a k : cod h→ dom g′ such that k ◦ h = h′ and g′ ◦ k = g

c b

a c′

g

kh
f

h′

g′

and F(k) is an identity morphism.
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Proposition connecting middle square and DCFs

• Moreover, a Conduché functor is discrete if each factorisation is
unique, i.e., the lifting of a factorization is unique ‘on the nose’
(not just up to equivalence).

• In a way very similar to Prop 1, we can prove the following:

Proposition 4
Let F : C→ D be a functor. The middle square is a pullback square if
and only if F is a discrete Conduché functor.

• Putting together Prop 1, Prop 3, and Prop 4, we recover that

Discrete Conduché fibrations include all discrete (op-)fibrations
every discrete (op-)fibration is also a discrete Conduché functor.
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Homology

• As earlier with (op)fibrations, when the middle square is not a
pullback we want to investigate how far F is from being a d.c.f.

•
0 C2 C1 × D2 D1

F̃1−#̃D(#C,F2)
again commutes, implying that Im(#C, F2) ⊆ ker(F̃1 − #̃D), and so

Definition (Discrete Cond Fib Homology Groups)

H−1
Cond := ker(#C, F2) H0Cond := ker(F̃1 − #̃D)/ Im(#C, F2)

• In a way similar to Proposition 2, can prove the following:

Proposition 5

Let F : C→ D be a functor. H−1
Cond,H0Cond are trivial if and only if F is a

discrete Conduché functor.

• Such groups thus essentially give us a way of measuring
obstructions to being a discrete Conduché functor.
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Applications: Decorated Petri
Nets, Delta Lenses



First Application

• As suggested by the opening slides, one application comes in
the context of categorical semantics for Petri nets.

• To apply our ideas, let’s be a bit more precise about how to think
about Petri nets and their semantics categorically.

• It is well-known that the (different kinds of) Petri net freely
generates a monoidal category (of an appropriate sort), by

• using its places to generate a monoid of objects,

• using each transition as a generating morphism, with domain and
codomain the monoidal product of its input/output places.

• A marking of the net (a placement of tokens throughout the net)
then corresponds to an object in the monoidal category, and an
execution or firing sequence (a sequence of transitions carrying
markings to other markings) corresponds to a morphism.
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In a Picture

Here’s a picture helping to visualize this, where we make use of
wiring diagrams to display morphisms of the monoidal category
(corresponding to executions of the net):

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

t v

u

p1

p2

p3

p3

p2

p2

p3

p3

p3
p4

p2

p3

p3

p3
p4

p2

p4

p3
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Categorical Approach in Detail

Given a Petri net N, we can generate a free symmetric strict monoidal
category, F (N), the category of executions of N:

• The free monoid of objects is P⊗, the set of strings generated by
P (places of the net), with unit the empty string, monoidal
product, denoted p⊗ p′, given by string concatenation.

• Morphisms are generated by the set of transitions T: each u ∈ T
corresponds to a morphism generator s(u) u−→ t(u), where
s(u), t(u) are obtained by choosing some ordering on their
multisets; morphisms obtained by all formal horizontal and
vertical compositions of generators, identities and symmetries.

Similarly, given a Petri net N, we can generate a free commutative
strict monoidal category C(N) by considering the set of multisets P⊕
as the free commutative monoid of objects, empty multiset as unit
and multiset sum as the multiplication.
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Petri Net

• The correspondence between Petri nets and free strict
symmetric monoidal categories — mapping a net to its possible
executions — supplies a process semantics for a net. The
semantics F (N) distinguishes between tokens living in the same
place, C(N) doesn’t.

• Part of the utility of the execution semantics is that it allows us
to interface with other structures using monoidal functors.

• Categorically, extensions (as found with guarded/colored nets
and bounded nets) are described by endowing a net N with
some sort of functor F (N) → D or, depending on the choice of
token philosophy, C(N) → D. (In practice, D is often taken to be
Span, the functor usually denoted N♯.)

• Guarded nets (with side effects) can be described as nets
endowed with strict monoidal functors F (N) → Span; bounded
nets as lax-monoidal-lax functors C(N) → Span.
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Applying our ideas

And now we start to arrive at how we can make our earlier results
bear on such things...

To apply our results to Petri nets, we need to use the following fact:

Lemma

[Due to Bénabou] Fix B. Any lax double functor B F−→ Span(Set) is a
pseudofunctor if and only if the projection

∫
F πF−→ B of its

Grothendieck construction is a discrete Conduché functor.

Corollary

For any lax double functor B F−→ Span(Set), the groups

H−1
cond

(∫
F πF−→ B

)
H0cond

(∫
F πF−→ B

)
measure obstructions to pseudofunctoriality of F.
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Applied

• Thanks to this lemma and corollary, we can measure how far a
categorical decoration N♯ : F (N) → Span, or N♯ : C(N) → Span,
for a Petri net N is from being pseudo.

• We can do this by examining the homology groups of the
associated functor, e.g.,

∫
N♯

πN♯−−→ F (N).
• What meaning does this have from the Petri net point of view?
• To see this, we’ll want to internalize the guard semantics in the
free category F (N) associated to a net N, where this means we
associate a traditional unguarded Petri net M such that it has
the same executions.

• Given a net N and a functor N♯, the process of internalization is
described by taking its Grothendieck construction

∫
N♯.

• The Grothendieck construction gives us a way to internalize span
semantics to nets. In practice, it means promoting token colors
to places and arcs between token colors to transitions.

49



Applied

• Thanks to this lemma and corollary, we can measure how far a
categorical decoration N♯ : F (N) → Span, or N♯ : C(N) → Span,
for a Petri net N is from being pseudo.

• We can do this by examining the homology groups of the
associated functor, e.g.,

∫
N♯

πN♯−−→ F (N).

• What meaning does this have from the Petri net point of view?
• To see this, we’ll want to internalize the guard semantics in the
free category F (N) associated to a net N, where this means we
associate a traditional unguarded Petri net M such that it has
the same executions.

• Given a net N and a functor N♯, the process of internalization is
described by taking its Grothendieck construction

∫
N♯.

• The Grothendieck construction gives us a way to internalize span
semantics to nets. In practice, it means promoting token colors
to places and arcs between token colors to transitions.

49



Applied

• Thanks to this lemma and corollary, we can measure how far a
categorical decoration N♯ : F (N) → Span, or N♯ : C(N) → Span,
for a Petri net N is from being pseudo.

• We can do this by examining the homology groups of the
associated functor, e.g.,

∫
N♯

πN♯−−→ F (N).
• What meaning does this have from the Petri net point of view?

• To see this, we’ll want to internalize the guard semantics in the
free category F (N) associated to a net N, where this means we
associate a traditional unguarded Petri net M such that it has
the same executions.

• Given a net N and a functor N♯, the process of internalization is
described by taking its Grothendieck construction

∫
N♯.

• The Grothendieck construction gives us a way to internalize span
semantics to nets. In practice, it means promoting token colors
to places and arcs between token colors to transitions.

49



Applied

• Thanks to this lemma and corollary, we can measure how far a
categorical decoration N♯ : F (N) → Span, or N♯ : C(N) → Span,
for a Petri net N is from being pseudo.

• We can do this by examining the homology groups of the
associated functor, e.g.,

∫
N♯

πN♯−−→ F (N).
• What meaning does this have from the Petri net point of view?
• To see this, we’ll want to internalize the guard semantics in the
free category F (N) associated to a net N, where this means we
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Example summing things up

Take the following guarded net (simplifying our one from the
beginning):

⇝

• Picture on the left: We decorate a base net N with token colors
and transition guards by defining a strict monoidal functor
N♯ : F (N) → Span.

• Since F (N) is freely generated, this amounts to mapping each
place to a set of colors and each transition to a span,
representing how colors are correlated by transitions.

• Picture on the right: Internalizing, we obtain a net M such that∫
N♯ = F (M) (see net on top). In practice, we promote token

colors and arcs in the left picture to places and transitions.
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Take-Away

• The functor N♯ : F (N) → Span for guarded nets is always strict,
and so the associated functor πN♯ :

∫
N♯ → F (N) is always

discrete Conduché.

• However, πN♯ :
∫
N♯ → F (N) is not always a discrete fibration.

• Take for instance the leftmost transition in the underlying net
and focus on the yellow place in

∫
N♯ above: The discrete

fibration condition requires a transition leading into it, but we
have none (failure of existence). In the case of the green place,
we have more than one (failure of uniqueness).
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Take-Away

• The green-circled place would be picked up as a non-trivial
element of the homology group H−1

fib

(∫
N♯

πN♯−−→ F (N)
)
.

• The yellow-circled place would be picked up as a non-trivial
element of the homology group H0fib

(∫
N♯

πN♯−−→ F (N)
)
.

• Altogether, the homology groups give us qualitative information
about which token colors are ‘problematic’ with respect to the
fibration condition failing.
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Bounded Nets

Another interesting case is that of bounded nets.

• Our semantics here is a lax-monoidal-lax functor
N♯ : C(N) → Span.

• This semantics is again internalizable, and so
∫
N♯ = F (M), as in:
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Application

Since our functor N♯ is only lax, the Lemma tells us that the functor∫
N♯ → C(N) is not always Conduché.

For the base net N, we have a particular execution, which can be
written down in two equivalent ways because we are using the
commutative semantics. This execution, seen as a morphism of C(N),
corresponds to two different executions of M, which are in turn
morphisms in

∫
N♯ = C(M).
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Observations

• The reason why this equality is not lifted to
∫
N♯(= C(M)) (see

the picture up top) is that in M all the places of N are doubled,
so whereas we could exchange any place c with itself in C(N), we
cannot do the same in C(M), as ċ and c̃, the place and antiplace
corresponding to c, are considered as different generators and
cannot be swapped.

• In this case, the obstructions to being discrete Conduché
witness histories that should ‘morally be identified’ in the
category C(M) of executions of the bounded net M, but are not.

• The homology groups give us qualitative information about
these obstructions — again to existence and uniqueness.

• In particular, the execution described for the example figure
above would be picked up as a non-trivial element of the
homology group H−1

cond

(∫
N♯

πN♯−−→ C(N)
)
.
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Delta Lenses

• We (briefly) consider one last application: to lenses.

• Recall that a lens is made of two parts:
• One is responsible for accessing a given part from an object
constituting the whole. We call this part get.

• The other, is responsible of pushing an update of the accessed
part to the whole, and we call it put.

• This concept has been formalized in a broad variety of ways; the
formalization we are most interested in is called delta lenses.

• Instead of defining a delta lens, let’s just note that in [0], it’s
pointed out how delta lenses generalize the concept of
opfibration: φ guarantees that, for each object c ∈ C and
morphism F(c) f−→ d ∈ D, we get a corresponding lift in C.
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More

• Yet, this lift may not be guaranteed to be unique. Indeed, we can
precisely think of a delta lens as a functor F : C→ D with a
chosen lift for each morphism of D.

d2

C d1

c cod(φ(c, f))

D F(c) d

F
φ(c,f)

f

• Delta lenses have been heavily studied; in [0], we find a
refinement of our Lemma, identifying delta lenses over D with
lax double functors D → Span that factorise in a particular way.
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More

• By applying the techniques developed in our work, we can make
a modest contribution, measuring how much a given delta lens
fails to be a discrete opfibration.

• A delta lens (F, φ) : C→ D always provides lifts for all morphisms
in D and objects of C. As such, H0opfib (F, φ) is always trivial.

• On the other hand, H−1
opfib (F, φ) is generally not-trivial, and

measures how far we are from having a unique lift operation
φ(−,−).

• From an applicative point of view, a delta lens that is also a
discrete opfibration is a very rigid structure: it tells us that there
is only one way to push an update of the part to the whole.

• In other words: also being a discrete opfibration means the
structure describing the way a part is transformed canonically
induces a transformation structure for the whole.

• It is thus a very sensible thing to want to consider obstructions
to delta lenses being a discrete opfibration.
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Discussion and Future Work



Discussion

• Investigating failures of compositionality in category theory
transcends mere theoretical relevance and has the potential of
impacting several real-world applications.

• With many modern ML systems being inherently compositional
and a growing scientific community focusing on their categorical
formalization, one is predictably interested in looking at where
such compositionality fails.

• Formal techniques to qualify such obstructions may hold
promise in improving understanding of ML’s inner workings.

• Applying the techniques heretofore presented to the fields of
categorical machine learning and cybernetics constitutes one of
the main directions for future work.
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Another direction

• Another important — and perhaps more obvious — direction of
future work consists in asking the obvious question: ‘what about
the other squares to the left?’

• We conjecture that, by looking at the diagram

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

sC

tC
#C#lC

#rC

#lD sD

#rD #D
tD

F3 F2 F1 F0

the next square proceeding to the left can be used to measure
the laxity of a given functor without necessarily going through
the Corollary from earlier.

• There should be a way to produce some homology group
measuring laxness of F directly, but this has proven to be an
elusive task so far.
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Thanks for listening! Questions?

60
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