
Proofs, Types and Hexagons
A Talk Dedicated To The Memory Of Phil Scott

Richard Blute
University of Ottawa

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

The book

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Categorical Proof Theory I

Categorical proof theory begins with the idea of forming a
category whose objects are formulas (=types) in a given logic
and whose arrows are (equivalence classes of) proofs
(=programs).

As a simple example, in intuitionistic logic, in the fragment
corresponding to ∧ and ⇒, conjunction takes on the form of a
categorical product. Logical implication gives the category
closed structure.

This construction gives the free cartesian closed category
generated by the atomic formulas, and terms in simply-typed
λ-calculus represent equivalence classes of proofs.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Categorical Proof Theory I

Categorical proof theory begins with the idea of forming a
category whose objects are formulas (=types) in a given logic
and whose arrows are (equivalence classes of) proofs
(=programs).

As a simple example, in intuitionistic logic, in the fragment
corresponding to ∧ and ⇒, conjunction takes on the form of a
categorical product. Logical implication gives the category
closed structure.

This construction gives the free cartesian closed category
generated by the atomic formulas, and terms in simply-typed
λ-calculus represent equivalence classes of proofs.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Categorical Proof Theory I

Categorical proof theory begins with the idea of forming a
category whose objects are formulas (=types) in a given logic
and whose arrows are (equivalence classes of) proofs
(=programs).

As a simple example, in intuitionistic logic, in the fragment
corresponding to ∧ and ⇒, conjunction takes on the form of a
categorical product. Logical implication gives the category
closed structure.

This construction gives the free cartesian closed category
generated by the atomic formulas, and terms in simply-typed
λ-calculus represent equivalence classes of proofs.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Categorical Proof Theory II

The counit of the adjunction

Hom(A ∧ B,C) ∼= Hom(B,A ⇒ C)

is a map η : A ∧ (A ⇒ C) → C . This is the familiar modus
ponens rule.

Similar remarks hold in various fragments of Girard’s linear
logic. Proof nets play the role of λ-calculus terms. (Give or
take problems with the units for the monoidal structures.)

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Categorical Proof Theory II

The counit of the adjunction

Hom(A ∧ B,C) ∼= Hom(B,A ⇒ C)

is a map η : A ∧ (A ⇒ C) → C . This is the familiar modus
ponens rule.

Similar remarks hold in various fragments of Girard’s linear
logic. Proof nets play the role of λ-calculus terms. (Give or
take problems with the units for the monoidal structures.)

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Polymorphic Types

Programs which run on polymorphic types, especially
parametric polymorphic types, are programs which run on a
family of types and have essentially the ”same” behavior on
each of those types.

A very simple example which will illustrate the issues we are
exploring is the polymorphic identity:

id : ∀α.α ⇒ α

The idea behind Functorial Polymorphism (Bainbridge, Freyd,
Scedrov, Scott) is that these variable types should be
represented by functors and programs would be natural
transformations.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Polymorphic Types

Programs which run on polymorphic types, especially
parametric polymorphic types, are programs which run on a
family of types and have essentially the ”same” behavior on
each of those types.

A very simple example which will illustrate the issues we are
exploring is the polymorphic identity:

id : ∀α.α ⇒ α

The idea behind Functorial Polymorphism (Bainbridge, Freyd,
Scedrov, Scott) is that these variable types should be
represented by functors and programs would be natural
transformations.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Polymorphic Types

Programs which run on polymorphic types, especially
parametric polymorphic types, are programs which run on a
family of types and have essentially the ”same” behavior on
each of those types.

A very simple example which will illustrate the issues we are
exploring is the polymorphic identity:

id : ∀α.α ⇒ α

The idea behind Functorial Polymorphism (Bainbridge, Freyd,
Scedrov, Scott) is that these variable types should be
represented by functors and programs would be natural
transformations.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Functorial Polymorphism

BUT

This doesn’t work.

The most interesting polymorphic types, such as α ⇒ α
α ∧ (α ⇒ β) can’t be considered as functors, since at least
one of the variables occurs simultaneously in a covariant and
contravariant position.

The solution is to view types such as α ⇒ α as a specific
instantiation of the more general multivariant functor
α ⇒ β : C × C → C, and then replace natural transformations
with dinatural transformations, The ”di” is short for diagonal.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Functorial Polymorphism

BUT

This doesn’t work.

The most interesting polymorphic types, such as α ⇒ α
α ∧ (α ⇒ β) can’t be considered as functors, since at least
one of the variables occurs simultaneously in a covariant and
contravariant position.

The solution is to view types such as α ⇒ α as a specific
instantiation of the more general multivariant functor
α ⇒ β : C × C → C, and then replace natural transformations
with dinatural transformations, The ”di” is short for diagonal.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Functorial Polymorphism

BUT

This doesn’t work.

The most interesting polymorphic types, such as α ⇒ α
α ∧ (α ⇒ β) can’t be considered as functors, since at least
one of the variables occurs simultaneously in a covariant and
contravariant position.

The solution is to view types such as α ⇒ α as a specific
instantiation of the more general multivariant functor
α ⇒ β : C × C → C, and then replace natural transformations
with dinatural transformations, The ”di” is short for diagonal.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Functorial Polymorphism

BUT

This doesn’t work.

The most interesting polymorphic types, such as α ⇒ α
α ∧ (α ⇒ β) can’t be considered as functors, since at least
one of the variables occurs simultaneously in a covariant and
contravariant position.

The solution is to view types such as α ⇒ α as a specific
instantiation of the more general multivariant functor
α ⇒ β : C × C → C, and then replace natural transformations
with dinatural transformations, The ”di” is short for diagonal.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Dinatural transformations

D in^tu.f aITf 4ns frtrrr.h,

t
o

3

F G C x ea

a
D

,

a rAA+GAAI n €el

sdl i

t^
Sy5t ln

F+A rA/^

FBB

CAA
t A

+ /\ ->s

ta

c*F

Fb/\I

\ B

FB$ eS
GBb

GA+oh -FfA GfE "% c trB{

4

iG
rt

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Dinatural transformations II: Examples

Ixa-Yn ES

(Dr
, G C ova.ciawF (rt c"ntl'"Vqciat'r]

q i\Fee, a*d. in,r {a,,/dt
,,rl'l

I a

(s) F c6 valLia(I, G c,o.n1oc v.

e- _ GAVA

CI I
) A -+B

A

trB B CB\-

@F K L
(cn rlsf^rnf)

a

l1

G

t
-(-)

(
-

)

Do GAB B
)

:F+Q I t^: | -6nela,4
AA lr+r?lI+ 7I

A(to ly* ca. ph,. iA.urt

FT

)

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Dinatural transformations III: Examples

a

?dvol*ntr
^?

V

x

\

w^1-V
V

C
^?

o(
a

a

V

x
t
D

AaJl x
(-)

I

\Ao
$vtn\r^l

,l-du,lr S (+r)
Vr

x 'xv
t

)ih\lD)
"aA

**A,
(rA^=,(

e
-13SuI

J
g

Y

#
1

q

C

E<__ VJe
J

VV

V

'. w) t= l_PS sr\l:

ox + (-)CC,

I

q
+

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Dinatural transformations III: Examples

A
dyA a A

xA f :A+B
eva

f R
C,V

B

a., A

b

e
*$D

I orl. Ct.n
3

t
t1)

.+) (^) o
c

'.€) G*raero\ E vr-l r.^t \n'

(
a (+ (n))

tb

A I
EV

A h'
A

x A
a

, , A

i o't, s $y tV\

+' ((t'+) (")) =(+ g) (+ r"))(

o

DB

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Dinatural transformations III: Examples

$> C),,.*.t^- Nl \ yn q-fal S

()
C)

()

A AA
-:*

A

n
\". L O ----o t^.

A
A /\,

A
A

A
+

-'> B
B

Covt anlo,
C3,c.'s t

A

()

n

nA

h

BB

.lll,

s
A

n

A

R

g
A

{

R

Bf

\

B B
A

+t
$

o

AL.4, .)

(f
3 sT,I n

f -(a o \
)

(

-

I
t

-

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!

This seems to work really well. In fact, this idea seems to be...

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!

This seems to work really well. In fact, this idea seems to be...

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!, Part 2

The intuition that variability=functoriality is quite pleasing.

The equations that the dinatural transformations generate are
exactly the sort of equations you would want polymorphic
programs to satisfy. Thus for more complicated examples of
types, dinaturality will suggest the equations that the
programs of that type should satisfy.

So let’s take a cartesian closed category, say the category Set
and form the category whose objects are these multivariant
functors and arrows are dinatural transformations. This should
be a cartesian closed category, right?

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!, Part 2

The intuition that variability=functoriality is quite pleasing.

The equations that the dinatural transformations generate are
exactly the sort of equations you would want polymorphic
programs to satisfy. Thus for more complicated examples of
types, dinaturality will suggest the equations that the
programs of that type should satisfy.

So let’s take a cartesian closed category, say the category Set
and form the category whose objects are these multivariant
functors and arrows are dinatural transformations. This should
be a cartesian closed category, right?

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!, Part 2

The intuition that variability=functoriality is quite pleasing.

The equations that the dinatural transformations generate are
exactly the sort of equations you would want polymorphic
programs to satisfy. Thus for more complicated examples of
types, dinaturality will suggest the equations that the
programs of that type should satisfy.

So let’s take a cartesian closed category, say the category Set
and form the category whose objects are these multivariant
functors and arrows are dinatural transformations. This should
be a cartesian closed category, right?

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!, Part 3

BUT

This too doesn’t work, for the most annoying reason
imaginable.

Dinatural transformations need not compose.

So we have a cartesian closed non-category.

In [Bainbridge, Freyd, Scedrov, Scott], they give an example
of a composable class of dinaturals on a category of partial
equivalence relations (PERs).

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!, Part 3

BUT

This too doesn’t work, for the most annoying reason
imaginable.

Dinatural transformations need not compose.

So we have a cartesian closed non-category.

In [Bainbridge, Freyd, Scedrov, Scott], they give an example
of a composable class of dinaturals on a category of partial
equivalence relations (PERs).

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!, Part 3

BUT

This too doesn’t work, for the most annoying reason
imaginable.

Dinatural transformations need not compose.

So we have a cartesian closed non-category.

In [Bainbridge, Freyd, Scedrov, Scott], they give an example
of a composable class of dinaturals on a category of partial
equivalence relations (PERs).

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!, Part 3

BUT

This too doesn’t work, for the most annoying reason
imaginable.

Dinatural transformations need not compose.

So we have a cartesian closed non-category.

In [Bainbridge, Freyd, Scedrov, Scott], they give an example
of a composable class of dinaturals on a category of partial
equivalence relations (PERs).

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

This is a great idea?!?!, Part 3

BUT

This too doesn’t work, for the most annoying reason
imaginable.

Dinatural transformations need not compose.

So we have a cartesian closed non-category.

In [Bainbridge, Freyd, Scedrov, Scott], they give an example
of a composable class of dinaturals on a category of partial
equivalence relations (PERs).

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Composing dinatural transformations

GYnPs, ^*tt Hxia--t"\
i

C

a
a

TAA

\A

c*

V4

GAl.
G*T

D, A ->9 6AB
B$

6$B

s r5 o +

TIAB

Al"s t11|

Di".^f
hcXah ans

co?rnpase

d;not al.,r.l-,

HilA

A GBArB

rBB? GBB I} BB

f.5otrn^.\
Co vnvw..tc

) o*t . Hox''1n^
(wri{dh 0 doezl

I--lcT: o I'AIDDLI' DtAhouD ?nltLa.(c

an Ft.xaXrrn 3 CDr l oS tl r

-

,B

)

i

t
aa

So-{nili- fl"t A-r\-e-

is o, @rY\15

isos)
€- 1, 1,w dinet r^S.h

t"
Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

An example

Here’s an example on the category of finite-dimensional vector
spaces. Let KI be the constant functor at the base field, and then
consider the multivariant functor F (V ,W) = V ∗ ⊗W .

Define a dinat as follows:

η : KI → F ηV : I → V ∗ ⊗ V 1 7→
∑

e∗i ⊗ ei

where the ei ’s vary over an arbitrary basis.

Next, consider the dinat defined by:

ϵ : F → KI ϵV : V ∗ ⊗ V → I f ⊗ v 7→ f (v)

The composition of these two dinats should be a dinat of the
form KI → KI . A dinat between constant functors is a single
arrow, but in fact, the composite of these two dinats depends
on V , it’s just dim(V).

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

An example

Here’s an example on the category of finite-dimensional vector
spaces. Let KI be the constant functor at the base field, and then
consider the multivariant functor F (V ,W) = V ∗ ⊗W .

Define a dinat as follows:

η : KI → F ηV : I → V ∗ ⊗ V 1 7→
∑

e∗i ⊗ ei

where the ei ’s vary over an arbitrary basis.

Next, consider the dinat defined by:

ϵ : F → KI ϵV : V ∗ ⊗ V → I f ⊗ v 7→ f (v)

The composition of these two dinats should be a dinat of the
form KI → KI . A dinat between constant functors is a single
arrow, but in fact, the composite of these two dinats depends
on V , it’s just dim(V).

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

An example

Here’s an example on the category of finite-dimensional vector
spaces. Let KI be the constant functor at the base field, and then
consider the multivariant functor F (V ,W) = V ∗ ⊗W .

Define a dinat as follows:

η : KI → F ηV : I → V ∗ ⊗ V 1 7→
∑

e∗i ⊗ ei

where the ei ’s vary over an arbitrary basis.

Next, consider the dinat defined by:

ϵ : F → KI ϵV : V ∗ ⊗ V → I f ⊗ v 7→ f (v)

The composition of these two dinats should be a dinat of the
form KI → KI . A dinat between constant functors is a single
arrow, but in fact, the composite of these two dinats depends
on V , it’s just dim(V).

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Back to categorical proof theory

The following is due to Jean-Yves Girard, Andre Scedrov and Phil
Scott.

Theorem

For any ”reasonable” logic with a categorical semantics, the
denotations of cut-free proofs determine dinatural transformations.

Proof.

The proof is a straightforward induction on the complexity of the
cut-free proof.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Dinatural transformations III: Examples

{* L) l(F F G PH

(r+ c) r- HK

F
G x K FH

K)AAl xru{ (CF xnAA il .GAAL-EAA
G) kt

!A-(Ct) BA x Fll (tr) cf A
txFAt

I x Arsmp. (CI) BA x FAB <
GU CBA Atrrnp.

txFtB
(eD)BA x KBB

-oEB
(CF)BA x FBB GBf

tr Gtr)

tr

(CF x

x
It?

lz

(GIBAx KAA EAI

EAB

EIB

txKlA
(CF x K)BA

(nr)

(G? x KIBB ffi (Ge x nBB

-

CBBT EBB

,r"\

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Cut-Elimination

The CUT rule in sequent calculus provides a method of stringing
proofs together. In categorical proof theory, it provides our
categories of proofs with composition.

Γ ⊢ A ∆,A ⊢ C

∆, Γ ⊢ C
CUT

The traditional formulation of Gentzen’s cut-elimination theorem
says:

Theorem

Every proof that can be derived with the use of the cut rule can be
derived without the cut rule.

The categorical formulation says:

Theorem

Every proof that uses the cut rule is equivalent to a proof that
does not use the cut rule.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Cut-Elimination

The CUT rule in sequent calculus provides a method of stringing
proofs together. In categorical proof theory, it provides our
categories of proofs with composition.

Γ ⊢ A ∆,A ⊢ C

∆, Γ ⊢ C
CUT

The traditional formulation of Gentzen’s cut-elimination theorem
says:

Theorem

Every proof that can be derived with the use of the cut rule can be
derived without the cut rule.

The categorical formulation says:

Theorem

Every proof that uses the cut rule is equivalent to a proof that
does not use the cut rule.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Cut-Elimination II

As a consequence, we can conclude:

Theorem (Girard, Scedrov, Scott)

The dinatural transformations arising as the interpretations of
cut-free proofs compose.

To obtain less syntactic examples of composable classes of dinats,
we will make use of full completeness theorems. The first results of
this sort used game theory for fragments of linear logic:

Abramsky & Jagadeesan obtained full completeness for
MLL+MIX.

Hyland & Ong obtained full completeness for MLL.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Cut-Elimination II

As a consequence, we can conclude:

Theorem (Girard, Scedrov, Scott)

The dinatural transformations arising as the interpretations of
cut-free proofs compose.

To obtain less syntactic examples of composable classes of dinats,
we will make use of full completeness theorems. The first results of
this sort used game theory for fragments of linear logic:

Abramsky & Jagadeesan obtained full completeness for
MLL+MIX.

Hyland & Ong obtained full completeness for MLL.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Full Completeness

While traditional completeness is with respect to provability, full
completeness is completeness with respect to proofs. Here’s a
game-theoretic version of this idea:

Theorem (Abramsky-Jagadeesan)

If σ is a a uniform history-free winning strategy for the game
associated to the sequent ⊢ Γ, then it is the denotation of a unique
cut-free proof net proving Γ.

RB and Phil Scott obtained full completeness in a category of
topological vector spaces and dinatural transformations.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Full Completeness

While traditional completeness is with respect to provability, full
completeness is completeness with respect to proofs. Here’s a
game-theoretic version of this idea:

Theorem (Abramsky-Jagadeesan)

If σ is a a uniform history-free winning strategy for the game
associated to the sequent ⊢ Γ, then it is the denotation of a unique
cut-free proof net proving Γ.

RB and Phil Scott obtained full completeness in a category of
topological vector spaces and dinatural transformations.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Full Completeness

While traditional completeness is with respect to provability, full
completeness is completeness with respect to proofs. Here’s a
game-theoretic version of this idea:

Theorem (Abramsky-Jagadeesan)

If σ is a a uniform history-free winning strategy for the game
associated to the sequent ⊢ Γ, then it is the denotation of a unique
cut-free proof net proving Γ.

RB and Phil Scott obtained full completeness in a category of
topological vector spaces and dinatural transformations.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Lefschetz topology

Lefschetz introduced this notion of topology with the intent of
having infinite-dimensional vector spaces which are isomorphic to
their second dual.

Definition

A vector space is a Lefschetz space if equipped with a T0-topology
such that

The vector operations are continuous, i.e. it is a topological
vector space. (We’ll assume that the base field is discrete.)

0 ∈ V has a neighborhood basis of open linear subspaces.

The category of Lefschetz spaces and continuous linear maps will
be denoted Lef.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Lefschetz topology II

Lemma (Barr)

Lef is symmetric, monoidal closed. The tensor is described by a
topology on the algebraic tensor product.

Lemma (Lefschetz)

The embedding ρ : V → V ∗∗ is a bijection for all Lefschetz spaces.

Definition

Let RLef be the full subcategory of reflexive objects, i.e. those
objects for which ρ is an isomorphism.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Lefschetz topology II

Lemma (Barr)

Lef is symmetric, monoidal closed. The tensor is described by a
topology on the algebraic tensor product.

Lemma (Lefschetz)

The embedding ρ : V → V ∗∗ is a bijection for all Lefschetz spaces.

Definition

Let RLef be the full subcategory of reflexive objects, i.e. those
objects for which ρ is an isomorphism.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Lefschetz topology II

Lemma (Barr)

Lef is symmetric, monoidal closed. The tensor is described by a
topology on the algebraic tensor product.

Lemma (Lefschetz)

The embedding ρ : V → V ∗∗ is a bijection for all Lefschetz spaces.

Definition

Let RLef be the full subcategory of reflexive objects, i.e. those
objects for which ρ is an isomorphism.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Lefschetz topology III

Theorem (Barr)

RLef is a ∗-autonomous category. In fact, RLef is a reflective
subcategory of Lef with reflection given by (−)∗∗.

In fact, this category was one of the primary motivations for the
definition of ∗-autonomous category.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Linear Läuchli Semantics

Definition

Let F and F ′ be formulas in Multiplicative Linear Logic,
interpreted as multivariant functors on RLef. We call the space of
dinatural transformations F → F the proof space of F ⊢ F ′,
denoted PRF(F ,F ′). It is a vector space.

Theorem (RB, Scott)

The space PRF(F ,F ′) has as a basis the denotations of cut-free
proofs of F ⊢ F ′ in MLL+MIX. Such dinatural transformations
therefore necessarily compose.

Theorem (RB, Scott)

If we consider only those dinatural transformations invariant under
a noncocommutative Hopf algebra called the shuffle Hopf algebra,
we obtain the same theorem for the noncommutative version of
linear logic called Cyclic MLL+MIX.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Linear Läuchli Semantics

Definition

Let F and F ′ be formulas in Multiplicative Linear Logic,
interpreted as multivariant functors on RLef. We call the space of
dinatural transformations F → F the proof space of F ⊢ F ′,
denoted PRF(F ,F ′). It is a vector space.

Theorem (RB, Scott)

The space PRF(F ,F ′) has as a basis the denotations of cut-free
proofs of F ⊢ F ′ in MLL+MIX. Such dinatural transformations
therefore necessarily compose.

Theorem (RB, Scott)

If we consider only those dinatural transformations invariant under
a noncocommutative Hopf algebra called the shuffle Hopf algebra,
we obtain the same theorem for the noncommutative version of
linear logic called Cyclic MLL+MIX.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Linear Läuchli Semantics

Definition

Let F and F ′ be formulas in Multiplicative Linear Logic,
interpreted as multivariant functors on RLef. We call the space of
dinatural transformations F → F the proof space of F ⊢ F ′,
denoted PRF(F ,F ′). It is a vector space.

Theorem (RB, Scott)

The space PRF(F ,F ′) has as a basis the denotations of cut-free
proofs of F ⊢ F ′ in MLL+MIX. Such dinatural transformations
therefore necessarily compose.

Theorem (RB, Scott)

If we consider only those dinatural transformations invariant under
a noncocommutative Hopf algebra called the shuffle Hopf algebra,
we obtain the same theorem for the noncommutative version of
linear logic called Cyclic MLL+MIX.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Cyclic Linear Logic

Cyclic linear logic [Yetter] is a noncommutative linear logic, where
one still assumes that the left negation is equal to the right
negation,

⊥A = A⊥

As a consequence, one obtains a limited notion of exchange.

⊢ Γ
⊢ σ(Γ)

where σ is a cyclic permutation.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Cyclic Linear Logic II

ε⊥

γ
⊥

α⊥&γ () β

)
α

δ⊥

(α

δ⊥

γ
⊥

δ)

(
ε

ε⊥

γ

α ⊥

⊥β
δ

γ
⊥

α⊥

δ⊥

δ⊥

γ
⊥α ⊥

⊥β

γ
β

α

α

δ

εγ

δ

Figure 1: A cyclic proof net

9
Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

Thanks!

Thank you for listening.

Richard Blute University of Ottawa Proofs, Types and Hexagons A Talk Dedicated To The Memory Of Phil Scott

