
Inference on diagrams in the category of Markov
kernels

Gregoire Sergeant-Perthuis and Nils Ruet

LCQB Sorbonne Université
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Geometric Deep Learning

Introduction to geometric deep learning:
• Deep learning← curse of dimensionality
• Accounting for symmetry
→ Translation⇝ CNN

• Geometry⇝ discretize
→ Graph NN [BBCV21]
→ Nodes share same features
→ Limitations: heterogeneous data

• Heterogeneity
→ Cellular sheaves [Cur13]
→ cell complex, faces⇝ feature space, inclusions⇝ linear maps
→ Functor from a poset to Vect
→ Sheaf Neural Networks [BGC+22]

First remark: limitation→ cell complexes.
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Bayesian inference

• We will not talk about geometric deep learning today.
• Bayesian inference: graphical models, Markov random fields,

factor graphs
• Limitation: no heterogeneity, no locality in the description of

variables
→ Extend Bayesian inference to account for probabilistic modeling

with heterogeneity and local descriptions.
⇝ Independent work from PhD [SP21]
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Structure of the Presentation

1 Graphical models
2 Factor graphs
3 Inference and (General) Belief Propagation
4 Graphical modesl, Factor graph as contravariant functor
5 New!: Heterogeneous structures and probabilistic modeling
6 New!: Inference on diagrams in the category of Markov kernels
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Graphical models

Definition (Undirected Graphical model)
A graphical model is the data of
• an undirected graph G = (I,A),
• a collection of variables X = (Xi ∈ Ei , i ∈ I), one per node and one

variable corresponds exactly to one node
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Definition (Markov properties)
Let G = (I,A) be a finite graph. Let X = (Xi , i ∈ I) be a collection of
random variables taking respectively values in the finite sets Ei . A
stritcly positive probability PX ∈ P(X ) on the finite set Ω =

∏
i∈I

Ei obeys,

1 (P) the pairwise Markov property relative to G, if for any pair (i , j)
of non-adjacent vertices

Xi ⊥⊥ Xj |XI\{i,j}.

2 (L) the local Markov property relative to G, if for any vectex i ∈ V ,

Xi ⊥⊥ XI\(i∪∂i)|X∂i

And we call the respective sets P(G), L(G).
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Definition (Factorisation space)
Let I be a finite set, let A ⊆P(I), where P(I) is the set of subsets of
I. Let (Ei , i ∈ I) be a collection of sets, let Ea =

∏
i∈a Ei for any

a ∈P(I); for x ∈ Ω, we will denote xa its projection onto Ea. The
factorisation space over A is defined as follows,

FacA = {P ∈ P(Ω) : ∃(fa ∈ REa
>0,a ∈ A ), s. t.∀x ∈ Ω P =

∏
a∈A

fa(xa)}

(0.1)

• How to relate the Markov properties to factorizations of the
underlying distribution?
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Definition (Cliques of a graph)
Let G = (I,A) be a graph; a clique of G is a subset of G such that every
two distinct vertices are adjacent. We will note C the set of its cliques.

Theorem (Hammersley-Clifford)

Let G = (I,A) be a finite graph. For all PX strictly positive probability
law on a finite set

∏
i∈I Ei ,

PX ∈ P(G) ⇐⇒ PX ∈ L(G) ⇐⇒ PX ∈ FacC . (0.2)

• Taking the ‘log’: product→ sum
→

∏
a fa →

∑
a Ha

→ Relation to statistical mechanics

Inference→ Belief propagation (in few slides)
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• Directed graphical models: Bayesian networks
• Inference on Bayesian networks:
→ Define an undirected graphical model
→ Inference on undirected graphical model
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Factor Graphs

• We want more general interaction than pairwise interaction
• Factor graphs:

- Bipartite graphs, nodes V = V0 ⊔ V1
- V1 collection of a ⊆ I with a→ fa
- V0 the set of indices i ∈ a for some a ∈ V1
- Edges i → a when i ∈ a

An example:
• Graphical model: X − Y − Z
• Factor graph: X → fX ,Y ← Y → fY ,Z ← Z

• Factor graphs generalize graphical models
• Spaces of factorization generalize both⇝ statistical mechanics.
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Exemple de modèle graphique et Belief Propagation

Reference: Statistical Inference in Graphical Models, K. Gimpel, D. Rudoy









Inference on graphical models: Belief Propagation

Simpler case: on graphical models→ use Belief Propagation
• Belief propagation computes the marginal distributions on edges

and nodes

• Consider a collection of random variables (Xi , i ∈ I) and an
undirected graphical model G : (I,A) that is acyclic.

PXi ,i∈I(xi , i ∈ I) =
∏
e∈A

fXe(xe)

• for each edge: two messages, mXi→Xj ∈ P(Ej)
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Start with mXi→Xj = 1 for all directed edges (i → j),

mt+1
Xi→Xj

(xj) =
∑
xi∈Ei

f{i,j}(xi , xj)
∏

Z∈∂Xi\Xj

mt
Z→Xi

(xi) (0.3)

The stopping criteria for the algorithm is when mXi→Xj (xj)
t+1, which is

a function over Ej , is proportional to mXi→Xj (xj)
t .

Once the algorithm has finished, the marginal distributions are
computed as

PXi (xi) ∝
∏

Xj∈∂Xi

mXj→Xi (xi) (0.4)

• Importantly, the algorithm is exact: inference is exact.
→ For Gaussian HMM⇝ (smoothed) Kalman filtering
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Proposition (Factorization on acyclic graphs)

Let I be a finite set and let Ω =
∏

i∈I Ei be a product of finite sets and
Xi , i ∈ I a collection of random variables taking values respectively in
Ei . Let G = (I,A) be a finite acyclic graph. PX ∈ P>0(E) factors
accordingly to A (G), i.e., PX ∈ FacA (G) if and only if for any ω ∈ Ω,

PX (ω) =

∏
e∈A PXe(ωe)∏

i∈I Pd(i)−1
Xi

(ωi)
, (0.5)

where d(i) is the degree of node i ∈ I.
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• Bayesian inference is maximizing entropy.
• Entropy:

S(Q) = −
∑
ω∈E

Q(x) lnQ(x) (0.6)

• Bayesian inference:
inf
Q

DKL(Q∥P)

• The same as minizing Gibbs free energy

inf
Q∈Θ

EQ[βH]− S(Q)
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• But entropy:

S(PX ) =
∑
e∈A

S(PXe)−
∑
i∈I

(d(i)− 1)S(PXi )

• Inclusion exclusion formula c(e) = 1, c(i) = −(d(i)− 1)
• Remarkably, Bayesian inference is the same as minimizing

[YFW05, YFW03],

FBethe(Q) =
∑
a∈V

c(a)S(Qa)− EQa [Ha]

where Q := (Qa ∈ P(Xa),a ∈ V ) with compatibility by
marginization:
→ if a is an edges and i an edge in a
→ πe

i : Ee → Ei
→ we ask πe

i ∗(Qe) = Qi
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• Belief Propagation (BP) is a discrete-time gradient descent (on
Lagrange multipliers) that solves

min
Q

FBethe(Q)

under ‘marginal’ compatibility.
• Fixed points of BP correspond to critical points of FBethe.
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Graphical presheaves: what underlies Bayesian
inference

→ I did not invent it [Pel20]... but I call it...

Definition (Graphical presheaves)
Let I be a finite set and A ⊆P(I) be a sub-poset of the powerset of I.
Let Ei , i ∈ I are finite sets. For a ∈ A Ea :=

∏
i∈a Ei , let F (a) := Ea,

and for b ⊆ a, let F a
b : Ea → Eb be the projection map from

∏
i∈a Ei to∏

i∈b Ei . F is called a graphical presheaf from A to Mesf .

• Only projections
• Only products of variables, and subcollection of variables
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Recall the Structure of the Presentation

1 Graphical models
2 Factor graphs
3 Inference and (General) Belief Propagation
4 Graphical modesl, Factor graph ... as contravariant functor
5 New!: Heterogeneous structures and probabilistic model
6 New!: Inference on diagrams in the category of Markov kernels
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• Consider any map, not just projections:
→ Measurable maps for b → a and even Markov kernels

• Account for possible heterogeneity, incompleteness, and
incompatibility in the description of variables:
→ Agents with different world models that communicate their beliefs
→ Broader class of effective models for potential computational

chemistry
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• Kernf : objects are finite measurable spaces, morphisms are
Markov kernels (stochastic matrices).
• F is a contravariant functor from A to Kernf ; F a

b : F (a)→ F (b) is
denoted element-wise as F a

b (ωb | ωa), with ωb ∈ F (b), ωa ∈ F (a).
→ F encodes all the ways our data can interact.
→ A is any poset, not just a collection of subsets.
→ Maps are not just projections.

• Q = (Qa ∈ P(F (a)),a ∈ A )

• FBethe(Q) =
∑

a∈A c(a) (EQa [Ha]− S(Qa)); c(a) =
∑

b≥a µ(b,a) is
the generalization of the inclusion-exclusion formula associated
with A .
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For a finite poset A ,
• the ‘zeta-operator’ of A , denoted ζ, from

⊕
a∈A R to

⊕
a∈A R is

defined as, for any λ ∈
⊕

a∈A R and any a ∈ A , ζ(λ)(a) =
∑
b≤a

λb

• its inverse denoted µ; (µ(a,b),b ≤ a) Möbius function of A .
We want to do Bayesian inference on these diagram.
• Constraint: the Qa must be compatible under the actions of the

F a
b , i.e. F a

b ◦Qa = Qb

• Problem: find an algorithm to ‘solve’ the optimization problem.
→ New message passing algorithm!
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F induces several actions: on probabilities, on probabilites seen as
vectors, on their dual...
• F̃ a

b : P(F (a))→ P(F (b)) is the linear map that sends probability
distributions p ∈ P(F (a)) to F a

b ◦ p

• F̃ ∗ is the functor obtained by dualizing the morphisms F̃ a
b , i.e.

F̃ ∗,b
a : F̃ (b)∗ → F̃ (a)∗ sends linear maps lb : F̃ (b)→ R to

lb ◦ F̃ a
b : F̃ (a)→ R.

µ can be extended to account for F̃ , F̃ ∗

• for a functor G from A to R-vector spaces, we define µG as, for
any a ∈ A and v ∈

⊕
a∈A G(a), µG(v)(a) =

∑
b≤a µ(a,b)G

b
a(vb).
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Frame Title

Recall minFBethe =
∑

a F (Qa) under
• Constraint: the Qa must be compatible under the actions of the

F a
b , i.e., F a

b ◦Qa = Qb

- i.e., Q ∈ lim F̃
- In fact, no... need to add the condition that the distribution sums to

one.
- But it’s okay!
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• FE :
∏

a∈A P(Ea)→
∏

a∈A R as
FE(Q) = (EQa [Ha]− Sa(Qa), a ∈ A ), which sends a collection of
probability measures over A to their Gibbs free energies.
• dQFE → differential of FE at the point Q.

Theorem

Let A be a finite poset, let F be a presheaf from A to Kernf . Let
Ha : F (a)→ R be a collection of (measurable) functions. The critical
points of F are the Q ∈ lim F̃ such that,

µF̃∗dQFE |lim F̃ = 0 (0.7)
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• Fix point of this message passing algorithm are critical point of
FBethe
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Proof of Characterization of Critical Points

Understanding expression of critical points:

Zeta function ⇣ and Möbius functions µ for functors:
• for u 2

L
a2A G(a), and a 2 A ,

⇣G(u)(a) =
X

ba

Gb
a(ub)

•
µG(u)(a) =

X

ba

µ(a, b)Gb
a(vb)

µG is the inverse of ⇣G
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Proof of Characterization of Critical Points

Understanding expression of critical points:

For F a functor from A op to vector spaces, critical points u of ‘global’
regionalized loss are such that:

[µF⇤dul]|limF = 0
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Proof of Characterization of Critical Points

Understanding expression of critical points:

0! limF !
M

a2A

F (a) �F!
M

a,b2A
a�b

F (b)

where for any v 2
L

a,b2A
a�b

F (b) and a, b 2 A such that b  a,

�F (v)(a, b) = F a
b (va)� vb

This is simply stating that ker � = limF .
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Proof of Characterization of Critical Points

Understanding expression of critical points:

0 (limF )⇤  
M

a2A

F (a)⇤ dF 
M

a,b2A
a�b

F (b)⇤

Pose d = �⇤. For any la!b 2
L

a,b2A
a�b

F (b)⇤ and a 2 A ,

dm(a) =
X

a�b

F a
b
⇤(ma!b)�

X

b�a

mb!a
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Proof of Characterization of Critical Points

Rewriting condition on fix points:

µ⇤
F dul 2 im d

is the same as the fact that there is (ma!b 2 F (b)⇤|a, b 2 A , b  a)
such that,

dul = ⇣F⇤dm
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Proof of Characterization of fix points of algorithm

Understanding this choice of message passing algorithm:

g Lagrange multipliers m to u 2
L

a2A F (a). �F (u) = 0 defines the
constraints on u.
�F g⇣F⇤dF sends a Lagrange multiplier m 2

L
a,b2A

a�b
F (b)⇤ to a

constraint c 2
L

a,b2A
a�b

F (b) defined as, for a, b 2 A such that b  a,

c(a, b) = �F g⇣F⇤dF m(a, b) = F a
b ga(⇣F⇤dF m(a))� gb(⇣F⇤dF m(b)))

(0.1)
We are interested in c = 0, i.e.

�F g⇣F⇤dF m = 0
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Proof of Characterization of fix points of algorithm

Understanding this choice of message passing algorithm:

Choice of algorithm on the Lagrange multipliers so that
�F g⇣F⇤dF m = 0,

m(t + 1)�m(t) = �F g⇣F⇤dF m(t)

Any other choice would also be a good candidate!
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