A Convenient Topological Setting for Higher-Order Probability Theory

Benedikt Peterseim (University of Bonn)

June 20, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 1. Backstory: Higher-Order Probability Theory
- 2. The Protagonists: Baire, Riesz, Radon, Giry
- 3. The Base Category: QCB Spaces
- 4. Construction: a Riesz Representation Theorem

5. Finale: The Baire Probability Monad

1. Backstory: Higher-Order Probability Theory

(ロト (個) (E) (E) (E) (の)

Fundamental problem:

Theorem.¹ The category Meas of measurable spaces and measurable maps is *not* cartesian closed.

¹Robert J Aumann. "Borel structures for function spaces". In: *Illinois* Journal of Mathematics 5.4 (1961), pp. 614–630. Fundamental problem:

Theorem.¹ The category Meas of measurable spaces and measurable maps is *not* cartesian closed.

 \leadsto root of technical subtleties in the theory of stochastic processes ("random functions")

¹Robert J Aumann. "Borel structures for function spaces". In: *Illinois* Journal of Mathematics 5.4 (1961), pp. 614–630.

Fundamental problem:

Theorem.¹ The category Meas of measurable spaces and measurable maps is *not* cartesian closed.

→ root of technical subtleties in the theory of stochastic processes ("random functions")
 → problem in the semantics of probabilistic functional programming languages

¹Robert J Aumann. "Borel structures for function spaces". In: *Illinois* Journal of Mathematics 5.4 (1961), pp. 614–630.

1. A base category C of "sample spaces",

- 1. A base category C of "sample spaces",
- 2. which is cartesian closed \rightsquigarrow higher-order functions,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

- 1. A base category $\mathsf C$ of "sample spaces",
- 2. which is cartesian closed \rightsquigarrow higher-order functions,

ション ふゆ さい シャリン しょうくしゃ

3. a notion of probability measure giving rise to a probability monad on C,

- 1. A base category C of "sample spaces",
- 2. which is cartesian closed \rightsquigarrow higher-order functions,
- 3. a notion of probability measure giving rise to a probability monad on C,
- 4. such that the Lebesgue measure on [0, 1] is a probability measure of this kind.

うして ふゆ く は く は く む く し く

One solution:

"A Convenient Category for Higher-Order Probability Theory" 2

 \rightsquigarrow introduces *quasi-Borel spaces* (QBS), a cartesian closed extension of standard Borel spaces, together with a notion of "probability measure" adapted to this setting.

²Chris Heunen et al. "A convenient category for higher-order probability theory". In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2017, pp. 1–12.

Curious phenomenon in the setting of QBS: failure of *deterministic marginal independence*.

Theorem.³ There is a probability measure on the QBS $\mathbb{R} \times 2^{\mathbb{R}}$, whose marginal on $2^{\mathbb{R}}$ is deterministic (given by δ_{\emptyset}), which is, however, *not* the product of its marginals.

" $(0.1978..., \emptyset), (0.6302..., \emptyset), (0.4414..., \emptyset), \ldots$ "

³Tobias Fritz et al. "Dilations and information flow axioms in categorical probability". In: *Mathematical Structures in Computer Science* 33.10 (2023), pp. 913–957.

Curious phenomenon in the setting of QBS: failure of *deterministic marginal independence*.

Theorem.³ There is a probability measure on the QBS $\mathbb{R} \times 2^{\mathbb{R}}$, whose marginal on $2^{\mathbb{R}}$ is deterministic (given by δ_{\emptyset}), which is, however, *not* the product of its marginals.

" $(0.1978..., \emptyset), (0.6302..., \emptyset), (0.4414..., \emptyset), \ldots$ "

Avoiding this phenomenon would require a <u>strongly affine</u> probability monad.

³Tobias Fritz et al. "Dilations and information flow axioms in categorical probability". In: *Mathematical Structures in Computer Science* 33.10 (2023), pp. 913–957.

Questions:

a. Is the failure of deterministic marginal independence unavoidable in higher-order probability theory?

Questions:

a. Is the failure of deterministic marginal independence unavoidable in higher-order probability theory?

b. Can we realise higher-order probability theory using a more common notion of "sample space"?

— In particular, is there a *topological* setting for higher-order probability theory?

うして ふゆ く は く は く む く し く

2. The Protagonists: Baire, Riesz, Radon, Giry

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Two new monads: Riesz, Baire probability monad.

CGWH: compactly generated weakly Hausdorff (WH) spaces QCB_h : WH quotients of countably based (QCB) spaces

Name	Base Cat.	Type of Measure	Strongly Affine?	Enriched over CCC?
Giry	Meas	Any	1	×
_	QBS	see $[3]$	X	1
Giry	Pol	Borel	\checkmark	×
Radon	CompHaus	Radon	\checkmark	×
\mathbf{Riesz}	CGWH	"k-regular"	?	1
Baire	QCB_h	Baire	1	✓

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Overview of various probability monads:

3. The Base Category: QCB Spaces

Definition.⁴ A QCB space is a topological space X for which there exists a second countable space Y and a topological quotient map $Y \to X$.

⁴Matias Menni and Alex Simpson. "Topological and limit-space subcategories of countably-based equilogical spaces". In: *Mathematical Structures in Computer Science* 12.6 (2002), pp. 739–770. (Interpretent Science Scien

Definition.⁴ A QCB space is a topological space X for which there exists a second countable space Y and a topological quotient map $Y \to X$.

In addition, X is *weakly Hausdorff* if limits of convergent sequences are unique.

⁴Matias Menni and Alex Simpson. "Topological and limit-space subcategories of countably-based equilogical spaces". In: *Mathematical Structures in Computer Science* 12.6 (2002), pp. 739–770. (Interpretent Science Scien

Definition.⁴ A QCB space is a topological space X for which there exists a second countable space Y and a topological quotient map $Y \to X$.

In addition, X is *weakly Hausdorff* if limits of convergent sequences are unique.

Write QCB_h for the category of WH QCB spaces with continuous maps as morphisms.

⁴Matias Menni and Alex Simpson. "Topological and limit-space subcategories of countably-based equilogical spaces". In: *Mathematical Structures in Computer Science* 12.6 (2002), pp. 739–770. (Interpretent Science Scien

Example. Every separable metric space is second-countable and hence a WH QCB space.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Example. Every separable metric space is second-countable and hence a WH QCB space.

Example. The space of tempered distributions $\mathcal{S}'(\mathbb{R}^n)$ is a WH QCB space (but *not* metrisable) with the strong topology.

・ロト ・四ト ・ヨト ・ヨト

Theorem. QCB_h is cartesian closed with countable limits and colimits.

All of this structure is inherited from the inclusion

 $\mathsf{QCB}_h \hookrightarrow \mathsf{CGWH}$

from WH QCB spaces into compactly generated weakly Hausdorff (CGWH) spaces.

Remark. Any QCB space X is sequential, i.e. a subset $U \subseteq X$ is open *iff* for any sequence $x_n \to x \in U$, (x_n) is eventually in U.

 \leadsto QCB topologies are completely determined by convergent sequences.

Example. The topology of the space $C(X, Y) = Y^X$ of continuous maps between WH QCB spaces X, Y can be described as follows:

 $f_n \to f$ in C(X, Y) $\Leftrightarrow f_n \to f$ uniformly on compact subsets of X \Leftrightarrow for all $x_n \to x \in X$, we have that $f_n(x_n) \to f(x)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Example. The space $C_b(X)$ of continuous bounded functions on a WH QCB space X carries a canonical WH QCB space topology:

$$C_b(X) := \operatorname{colim}_{n \in \mathbb{N}} C(X, B_n^{\mathbb{C}}(0))$$

A sequence (f_n) converges in $C_b(X)$ *iff* it is uniformly bounded by some constant R and it converges in $C(X, B_R^{\mathbb{C}}(0))$.

(Here, $B_R^{\mathbb{C}}(0)$ is the ball/disc of radius R centred at 0 in the complex numbers.)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

4. Construction: a Riesz Representation Theorem

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Theorem. The (continuous) dual of $C_b(X)$ can be identified with the space $\mathcal{M}_0(X)$ of finite complex Baire measures on X, via the bijection

$$\mathcal{M}_0(X) \to C_b(X)', \ \mu \mapsto \int_X (-) \,\mathrm{d}\mu.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Theorem. The (continuous) dual of $C_b(X)$ can be identified with the space $\mathcal{M}_0(X)$ of finite complex Baire measures on X, via the bijection

$$\mathcal{M}_0(X) \to C_b(X)', \ \mu \mapsto \int_X (-) \,\mathrm{d}\mu.$$

 $\rightsquigarrow \mathcal{M}_0(X) \subseteq C(C_b(X))$ also acquires a WH QCB topology in which $\mu_n \to \mu$ iff for all $f_n \to f \in C_b(X)$,

$$\int_X f_n \,\mathrm{d}\mu_n \to \int_X f \,\mathrm{d}\mu.$$

うして ふゆ く は く は く む く し く

Theorem. The (continuous) dual of $C_b(X)$ can be identified with the space $\mathcal{M}_0(X)$ of finite complex Baire measures on X, via the bijection

$$\mathcal{M}_0(X) \to C_b(X)', \ \mu \mapsto \int_X (-) \,\mathrm{d}\mu.$$

 $\rightsquigarrow \mathcal{M}_0(X) \subseteq C(C_b(X))$ also acquires a WH QCB topology in which $\mu_n \to \mu$ iff for all $f_n \to f \in C_b(X)$,

$$\int_X f_n \,\mathrm{d}\mu_n \to \int_X f \,\mathrm{d}\mu$$

Fact. This coincides with the weak topology when X is a Polish space and the (μ_n) are probability measures.

Definition. Let X be a WH QCB space.

 $\mathcal{M}(X) := \overline{\operatorname{span} \delta_{\bullet}(X)} \subseteq \mathcal{M}_0(X) \subseteq C(C_b(X)).$

Using cartesian closedness of QCB_h , we obtain:

Theorem. The following maps are well-defined and continuous:

$$(-)_* : C(X,Y) \to C(\mathcal{M}(X), \mathcal{M}(Y)), \quad f \mapsto f_*,$$
$$\delta_{\bullet} : X \to \mathcal{M}(X), \quad x \mapsto \delta_x,$$
$$\mathcal{J} : \mathcal{M}(\mathcal{M}(X)) \to \mathcal{M}(X), \quad \pi \mapsto \left[A \mapsto \int_{\mathcal{M}(X)} \mu(A) \, \mathrm{d}\pi(\mu) \right],$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Using cartesian closedness of QCB_h , we obtain:

Theorem. The following maps are well-defined and continuous:

$$(-)_* : C(X,Y) \to C(\mathcal{M}(X), \mathcal{M}(Y)), \quad f \mapsto f_*,$$
$$\delta_{\bullet} : X \to \mathcal{M}(X), \quad x \mapsto \delta_x,$$

$$\S : \mathcal{M}(\mathcal{M}(X)) \to \mathcal{M}(X), \ \pi \mapsto \left[A \mapsto \int_{\mathcal{M}(X)} \mu(A) \, \mathrm{d}\pi(\mu) \right],$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

With this structure, \mathcal{M} is an enriched monad on QCB_h !

Question: Is \mathcal{M} commutative?

Question: Is \mathcal{M} commutative? Yes!

Theorem. Let X, Y be WH QCB spaces, $\mu \in \mathcal{M}(X)$, $\nu \in \mathcal{M}(Y), f \in C_b(X \times Y)$. Then,

$$\int_X \int_Y f(x,y) \,\mathrm{d}\nu(y) \mathrm{d}\mu(x) = \int_Y \int_X f(x,y) \,\mathrm{d}\mu(x) \mathrm{d}\nu(y).$$

Proof. This holds for finitely supported measures and both sides are continuous in (μ, ν) .

ション ふゆ さい シャリン しょうくしゃ

5. Finale: The Baire Probability Monad

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Definition. For X a WH QCB space,

 $\mathcal{P}(X) := \{ \mu \in \mathcal{M}(X) \mid \mu \text{ probability measure } \}.$

Definition. For X a WH QCB space,

 $\mathcal{P}(X) := \{ \mu \in \mathcal{M}(X) \mid \mu \text{ probability measure } \}.$

Theorem. With $(-)_*, \delta, \zeta$ defined as for \mathcal{M}, \mathcal{P} is a strongly affine, commutative enriched monad on QCB_h .

Takeaways:

1. In addition to the measurable-flavoured setting of quasi-Borel spaces, there are *topological* settings for higher-order probability theory.

Takeaways:

1. In addition to the measurable-flavoured setting of quasi-Borel spaces, there are *topological* settings for higher-order probability theory.

2. Higher-order probability theory and deterministic marginal independence are compatible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Takeaways:

1. In addition to the measurable-flavoured setting of quasi-Borel spaces, there are *topological* settings for higher-order probability theory.

2. Higher-order probability theory and deterministic marginal independence are compatible.

3. In the topological setting, we have a category for higher-order probability theory whose objects are familiar kinds of spaces: we do not have to move beyond topological spaces.

うして ふゆ く は く は く む く し く

Thank you!

Further details:

Benedikt Peterseim. "On Monadic Vector-Valued Integration". In: MSc thesis, arXiv:2403.19681 (2024)

Peter Kristel and Benedikt Peterseim. "A Topologically Enriched Probability Monad on the Cartesian Closed Category of CGWH Spaces". In: arXiv preprint arXiv:2404.08430 (2024)

うして ふゆ く は く は く む く し く

References I

- Robert J Aumann. "Borel structures for function spaces". In: *Illinois Journal of Mathematics* 5.4 (1961), pp. 614–630.
- [2] Tobias Fritz et al. "Dilations and information flow axioms in categorical probability". In: *Mathematical Structures in Computer Science* 33.10 (2023), pp. 913–957.
- [3] Chris Heunen et al. "A convenient category for higher-order probability theory". In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2017, pp. 1–12.
- [4] Peter Kristel and Benedikt Peterseim. "A Topologically Enriched Probability Monad on the Cartesian Closed Category of CGWH Spaces". In: arXiv preprint arXiv:2404.08430 (2024).

References II

 [5] Matias Menni and Alex Simpson. "Topological and limit-space subcategories of countably-based equilogical spaces". In: *Mathematical Structures in Computer Science* 12.6 (2002), pp. 739–770.

うして ふゆ く は く は く む く し く

 [6] Benedikt Peterseim. "On Monadic Vector-Valued Integration". In: MSc thesis, arXiv:2403.19681 (2024).