A Convenient Topological Setting for Higher-Order Probability Theory

Benedikt Peterseim (University of Bonn)

June 20, 2024

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

- 1. Backstory: Higher-Order Probability Theory
- 2. The Protagonists: Baire, Riesz, Radon, Giry
- 3. The Base Category: QCB Spaces
- 4. Construction: a Riesz Representation Theorem

K ロ K K 제8 K X 제공 X X 제공 X 및 및 X 9 Q Q X

5. Finale: The Baire Probability Monad

1. Backstory: Higher-Order Probability Theory

K □ K K 레이지 (B K 제품 K X 및 M X Q Q Q

Fundamental problem:

Theorem.¹ The category Meas of measurable spaces and measurable maps is not cartesian closed.

¹Robert J Aumann. "Borel structures for function spaces". In: *Illinois* Journal of Mathematics 5.4 (1961), pp. 614–630. The result of the set of \mathbb{R}^+ Fundamental problem:

Theorem.¹ The category Meas of measurable spaces and measurable maps is not cartesian closed.

 \rightarrow root of technical subtleties in the theory of stochastic processes ("random functions")

¹Robert J Aumann. "Borel structures for function spaces". In: *Illinois* Journal of Mathematics 5.4 (1961), pp. 614–630. The result of the set of \mathbb{R}^+ Fundamental problem:

Theorem.¹ The category Meas of measurable spaces and measurable maps is not cartesian closed.

 \rightarrow root of technical subtleties in the theory of stochastic processes ("random functions") \rightarrow problem in the semantics of probabilistic functional programming languages

¹Robert J Aumann. "Borel structures for function spaces". In: *Illinois* Journal of Mathematics 5.4 (1961), pp. 614–630. The result of the set of \mathbb{R}^+

1. A base category C of "sample spaces",

- 1. A base category C of "sample spaces",
- 2. which is cartesian closed \rightsquigarrow higher-order functions,

- 1. A base category C of "sample spaces",
- 2. which is cartesian closed \rightsquigarrow higher-order functions,

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

3. a notion of probability measure giving rise to a probability monad on C,

- 1. A base category C of "sample spaces",
- 2. which is cartesian closed \rightsquigarrow higher-order functions,
- 3. a notion of probability measure giving rise to a probability monad on C,
- 4. such that the Lebesgue measure on $[0, 1]$ is a probability measure of this kind.

One solution:

"A Convenient Category for Higher-Order Probability Theory"²

 \rightsquigarrow introduces *quasi-Borel spaces* (QBS), a cartesian closed extension of standard Borel spaces, together with a notion of "probability measure" adapted to this setting.

²Chris Heunen et al. "A convenient category for higher-order probability theory". In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2017, pp. 1–12. \Box Curious phenomenon in the setting of QBS: failure of deterministic marginal independence.

Theorem.³ There is a probability measure on the QBS $\mathbb{R} \times 2^{\mathbb{R}}$, whose marginal on $2^{\mathbb{R}}$ is deterministic (given by δ_{\emptyset}), which is, however, *not* the product of its marginals.

" $(0.1978...,\emptyset)$, $(0.6302...,\emptyset)$, $(0.4414...,\emptyset)$, ... "

³Tobias Fritz et al. "Dilations and information flow axioms in categorical probability". In: Mathematical Structures in Computer Science 33.10 (2023), pp. 913–957.

Curious phenomenon in the setting of QBS: failure of deterministic marginal independence.

Theorem.³ There is a probability measure on the QBS $\mathbb{R} \times 2^{\mathbb{R}}$, whose marginal on $2^{\mathbb{R}}$ is deterministic (given by δ_{\emptyset}), which is, however, *not* the product of its marginals.

" $(0.1978...,\emptyset)$, $(0.6302...,\emptyset)$, $(0.4414...,\emptyset)$, ... "

Avoiding this phenomenon would require a strongly affine probability monad.

³Tobias Fritz et al. "Dilations and information flow axioms in categorical probability". In: Mathematical Structures in Computer Science 33.10 (2023), pp. 913–957.

Questions:

a. Is the failure of deterministic marginal independence unavoidable in higher-order probability theory?

Questions:

a. Is the failure of deterministic marginal independence unavoidable in higher-order probability theory?

b. Can we realise higher-order probability theory using a more common notion of "sample space"?

— In particular, is there a topological setting for higher-order probability theory?

K ロ K K 제8 K X 제공 X X 제공 X 및 및 X 9 Q Q X

2. The Protagonists: Baire, Riesz, Radon, Giry

Two new monads: Riesz, Baire probability monad.

CGWH: compactly generated weakly Hausdorff (WH) spaces QCB_h : WH quotients of countably based (QCB) spaces

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Overview of various probability monads:

3. The Base Category: QCB Spaces

K ロ K K (메 K K E K K E K A W K C K H K H C H C H C

Definition.⁴ A QCB space is a topological space X for which there exists a second countable space Y and a topological quotient map $Y \to X$.

⁴Matias Menni and Alex Simpson. "Topological and limit-space subcategories of countably-based equilogical spaces". In: Mathematical Structures in Computer Science 12.6 (2002), pp. [739](#page-18-0)[–77](#page-20-0)[0](#page-18-0)[.](#page-19-0)

Definition.⁴ A QCB space is a topological space X for which there exists a second countable space Y and a topological quotient map $Y \to X$.

In addition, X is weakly Hausdorff if limits of convergent sequences are unique.

⁴Matias Menni and Alex Simpson. "Topological and limit-space subcategories of countably-based equilogical spaces". In: Mathematical Structures in Computer Science 12.6 (2002), pp. [739](#page-19-0)[–77](#page-21-0)[0](#page-18-0)[.](#page-19-0)

Definition.⁴ A QCB space is a topological space X for which there exists a second countable space Y and a topological quotient map $Y \to X$.

In addition, X is weakly Hausdorff if limits of convergent sequences are unique.

Write QCB_h for the category of WH QCB spaces with continuous maps as morphisms.

⁴Matias Menni and Alex Simpson. "Topological and limit-space subcategories of countably-based equilogical spaces". In: Mathematical Structures in Computer Science 12.6 (2002), pp. [739](#page-20-0)[–77](#page-22-0)[0](#page-18-0)[.](#page-19-0)

Example. Every separable metric space is second-countable and hence a WH QCB space.

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example. Every separable metric space is second-countable and hence a WH QCB space.

Example. The space of tempered distributions $\mathcal{S}'(\mathbb{R}^n)$ is a WH QCB space (but *not* metrisable) with the strong topology.

KORKA SERKER ORA

Theorem. QCB_h is cartesian closed with countable limits and colimits.

All of this structure is inherited from the inclusion

 $QCB_b \hookrightarrow CGWH$

from WH QCB spaces into compactly generated weakly Hausdorff (CGWH) spaces.

Remark. Any QCB space X is sequential, i.e. a subset $U \subseteq X$ is open iff for any sequence $x_n \to x \in U$, (x_n) is eventually in U.

K ロ K K 제8 K X 제공 X X 제공 X 및 및 X 9 Q Q X

⇝ QCB topologies are completely determined by convergent sequences.

Example. The topology of the space $C(X, Y) = Y^X$ of continuous maps between WH QCB spaces X, Y can be described as follows:

 $f_n \to f$ in $C(X, Y)$ \Leftrightarrow $f_n \rightarrow f$ uniformly on compact subsets of X \Leftrightarrow for all $x_n \to x \in X$, we have that $f_n(x_n) \to f(x)$.

KORKA SERKER ORA

Example. The space $C_b(X)$ of continuous bounded functions on a WH QCB space X carries a canonical WH QCB space topology:

$$
C_b(X):=\operatorname{colim}_{n\in\mathbb{N}}C(X,B_n^\mathbb{C}(0))
$$

A sequence (f_n) converges in $C_b(X)$ iff it is uniformly bounded by some constant R and it converges in $C(X, B_R^{\mathbb{C}}(0))$.

(Here, $B_R^{\mathbb{C}}(0)$ is the ball/disc of radius R centred at 0 in the complex numbers.)

4. Construction: a Riesz Representation Theorem

Theorem. The (continuous) dual of $C_b(X)$ can be identified with the space $\mathcal{M}_0(X)$ of finite complex Baire measures on X, via the bijection

$$
\mathcal{M}_0(X) \to C_b(X)', \ \ \mu \mapsto \int_X (-) \, \mathrm{d}\mu.
$$

Theorem. The (continuous) dual of $C_b(X)$ can be identified with the space $\mathcal{M}_0(X)$ of finite complex Baire measures on X, via the bijection

$$
\mathcal{M}_0(X) \to C_b(X)', \ \ \mu \mapsto \int_X (-) \, \mathrm{d}\mu.
$$

 \rightsquigarrow M₀(X) ⊆ C(C_b(X)) also acquires a WH QCB topology in which $\mu_n \to \mu$ iff for all $f_n \to f \in C_b(X)$,

$$
\int_X f_n \, \mathrm{d}\mu_n \to \int_X f \, \mathrm{d}\mu.
$$

KORKA SERKER ORA

Theorem. The (continuous) dual of $C_b(X)$ can be identified with the space $\mathcal{M}_0(X)$ of finite complex Baire measures on X, via the bijection

$$
\mathcal{M}_0(X) \to C_b(X)', \ \ \mu \mapsto \int_X (-) \, \mathrm{d}\mu.
$$

 \rightsquigarrow $\mathcal{M}_0(X)$ ⊆ $C(C_b(X))$ also acquires a WH QCB topology in which $\mu_n \to \mu$ iff for all $f_n \to f \in C_b(X)$,

$$
\int_X f_n \, \mathrm{d}\mu_n \to \int_X f \, \mathrm{d}\mu.
$$

Fact. This coincides with the weak topology when X is a Polish space and the (μ_n) are probability measures.

Definition. Let X be a WH QCB space.

$$
\mathcal{M}(X) := \operatorname{span} \delta_{\bullet}(X) \subseteq \mathcal{M}_0(X) \subseteq C(C_b(X)).
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Using cartesian closedness of QCB_h , we obtain:

Theorem. The following maps are well-defined and continuous:

$$
(-)_* : C(X, Y) \to C(\mathcal{M}(X), \mathcal{M}(Y)), f \mapsto f_*,
$$

$$
\delta_{\bullet} : X \to \mathcal{M}(X), x \mapsto \delta_x,
$$

$$
\S : \mathcal{M}(\mathcal{M}(X)) \to \mathcal{M}(X), \pi \mapsto \left[A \mapsto \int_{\mathcal{M}(X)} \mu(A) d\pi(\mu) \right],
$$

Using cartesian closedness of QCB_h , we obtain:

Theorem. The following maps are well-defined and continuous:

$$
(-)_*: C(X, Y) \to C(\mathcal{M}(X), \mathcal{M}(Y)), f \mapsto f_*,
$$

$$
\delta_{\bullet}: X \to \mathcal{M}(X), x \mapsto \delta_x,
$$

$$
\zeta: \mathcal{M}(\mathcal{M}(X)) \to \mathcal{M}(X), \quad \pi \mapsto \left[A \mapsto \int_{\mathcal{M}(X)} \mu(A) d\pi(\mu)\right],
$$

With this structure, $\mathcal M$ is an enriched monad on $\mathsf{QCB}_h!$

Question: Is M commutative?

Question: Is M commutative? Yes!

Theorem. Let X, Y be WH QCB spaces, $\mu \in \mathcal{M}(X)$, $\nu \in \mathcal{M}(Y), f \in C_b(X \times Y)$. Then,

$$
\int_X \int_Y f(x, y) d\nu(y) d\mu(x) = \int_Y \int_X f(x, y) d\mu(x) d\nu(y).
$$

Proof. This holds for finitely supported measures and both sides are continuous in (μ, ν) .

KORKARKKERKER POLO

5. Finale: The Baire Probability Monad

K ロ K K (메 K K E K K E K A W K C K H K H C H C H C

Definition. For X a WH QCB space,

 $\mathcal{P}(X) := \{ \mu \in \mathcal{M}(X) \mid \mu \text{ probability measure } \}.$

KO KKOK KEK KEK LE YOKO

Definition. For X a WH QCB space,

 $\mathcal{P}(X) := \{ \mu \in \mathcal{M}(X) \mid \mu \text{ probability measure } \}.$

Theorem. With $(-)_*, \delta, \delta$ defined as for \mathcal{M}, \mathcal{P} is a strongly affine, commutative enriched monad on QCB_h .

Takeaways:

1. In addition to the measurable-flavoured setting of quasi-Borel spaces, there are topological settings for higher-order probability theory.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Takeaways:

1. In addition to the measurable-flavoured setting of quasi-Borel spaces, there are topological settings for higher-order probability theory.

2. Higher-order probability theory and deterministic marginal independence are compatible.

KOL E KELKELKAPI KOLA

Takeaways:

1. In addition to the measurable-flavoured setting of quasi-Borel spaces, there are topological settings for higher-order probability theory.

2. Higher-order probability theory and deterministic marginal independence are compatible.

3. In the topological setting, we have a category for higher-order probability theory whose objects are familiar kinds of spaces: we do not have to move beyond topological spaces.

KORKA SERKER ORA

Thank you!

Further details:

Benedikt Peterseim. "On Monadic Vector-Valued Integration". In: MSc thesis, arXiv:2403.19681 (2024)

Peter Kristel and Benedikt Peterseim. "A Topologically Enriched Probability Monad on the Cartesian Closed Category of CGWH Spaces". In: arXiv preprint arXiv:2404.08430 (2024)

KORKA SERKER ORA

References I

- [1] Robert J Aumann. "Borel structures for function spaces". In: Illinois Journal of Mathematics 5.4 (1961), pp. 614–630.
- [2] Tobias Fritz et al. "Dilations and information flow axioms in categorical probability". In: Mathematical Structures in Computer Science 33.10 (2023), pp. 913–957.
- [3] Chris Heunen et al. "A convenient category for higher-order probability theory". In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2017, pp. 1–12.
- [4] Peter Kristel and Benedikt Peterseim. "A Topologically Enriched Probability Monad on the Cartesian Closed Category of CGWH Spaces". In: arXiv preprint arXiv:2404.08430 (2024).

KORKAR KERKER EL POLO

References II

[5] Matias Menni and Alex Simpson. "Topological and limit-space subcategories of countably-based equilogical spaces". In: Mathematical Structures in Computer Science 12.6 (2002), pp. 739–770.

KORKA SERKER ORA

[6] Benedikt Peterseim. "On Monadic Vector-Valued Integration". In: MSc thesis, arXiv:2403.19681 (2024).