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1. Backstory: Higher-Order Probability Theory



Fundamental problem:

Theorem.1 The category Meas of measurable spaces and
measurable maps is not cartesian closed.

⇝ root of technical subtleties in the theory of stochastic
processes (“random functions”)
⇝ problem in the semantics of probabilistic functional
programming languages

1Robert J Aumann. “Borel structures for function spaces”. In: Illinois
Journal of Mathematics 5.4 (1961), pp. 614–630.
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A remedy for this problem should consist of:

1. A base category C of “sample spaces”,

2. which is cartesian closed ⇝ higher-order functions,
3. a notion of probability measure giving rise to a

probability monad on C,
4. such that the Lebesgue measure on [0, 1] is a probability

measure of this kind.
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One solution:

“A Convenient Category for Higher-Order Probability Theory”2

⇝ introduces quasi-Borel spaces (QBS), a cartesian closed
extension of standard Borel spaces, together with a notion of
“probability measure” adapted to this setting.

2Chris Heunen et al. “A convenient category for higher-order probability
theory”. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). IEEE. 2017, pp. 1–12.



Curious phenomenon in the setting of QBS: failure of
deterministic marginal independence.

Theorem.3 There is a probability measure on the QBS R× 2R,
whose marginal on 2R is deterministic (given by δ∅),
which is, however, not the product of its marginals.

“ (0.1978 . . . , ∅), (0.6302 . . . , ∅), (0.4414 . . . , ∅), . . . ”

Avoiding this phenomenon would require a strongly affine
probability monad.

3Tobias Fritz et al. “Dilations and information flow axioms in categorical
probability”. In: Mathematical Structures in Computer Science 33.10
(2023), pp. 913–957.
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Questions:

a. Is the failure of deterministic marginal independence
unavoidable in higher-order probability theory?

b. Can we realise higher-order probability theory using a
more common notion of “sample space”?

— In particular, is there a topological setting for higher-order
probability theory?
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2. The Protagonists: Baire, Riesz, Radon, Giry



Two new monads: Riesz, Baire probability monad.

CGWH

QCBh CompHaus

Pol

“Riesz monad”

“Baire monad”

“Radon monad”

“Giry monad”

CGWH: compactly generated weakly Hausdorff (WH) spaces
QCBh: WH quotients of countably based (QCB) spaces



Overview of various probability monads:

Name Base Cat. Type of
Measure

Strongly
Affine?

Enriched
over CCC?

Giry Meas Any ✓ ✗

– QBS see [3] ✗ ✓

Giry Pol Borel ✓ ✗

Radon CompHaus Radon ✓ ✗

Riesz CGWH “k-regular” ? ✓

Baire QCBh Baire ✓ ✓



3. The Base Category: QCB Spaces



Definition.4 A QCB space is a topological space X for which
there exists a second countable space Y and a topological
quotient map Y → X.

In addition, X is weakly Hausdorff if limits of convergent
sequences are unique.

Write QCBh for the category of WH QCB spaces with
continuous maps as morphisms.

4Matias Menni and Alex Simpson. “Topological and limit-space
subcategories of countably-based equilogical spaces”. In: Mathematical
Structures in Computer Science 12.6 (2002), pp. 739–770.
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Example. Every separable metric space is second-countable
and hence a WH QCB space.

Example. The space of tempered distributions S ′(Rn) is a
WH QCB space (but not metrisable) with the strong topology.
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Theorem. QCBh is cartesian closed with countable limits and
colimits.

All of this structure is inherited from the inclusion

QCBh ↪→ CGWH

from WH QCB spaces into compactly generated weakly
Hausdorff (CGWH) spaces.



Remark. Any QCB space X is sequential, i.e. a subset U ⊆ X
is open iff for any sequence xn → x ∈ U , (xn) is eventually in U .

⇝ QCB topologies are completely determined by convergent
sequences.



Example. The topology of the space C(X,Y ) = Y X of
continuous maps between WH QCB spaces X,Y can be
described as follows:

fn → f in C(X,Y )

⇔ fn → f uniformly on compact subsets of X
⇔ for all xn → x ∈ X, we have that fn(xn) → f(x).



Example. The space Cb(X) of continuous bounded functions
on a WH QCB space X carries a canonical WH QCB space
topology:

Cb(X) := colimn∈N C(X,BC
n (0))

A sequence (fn) converges in Cb(X) iff it is uniformly bounded
by some constant R and it converges in C(X,BC

R(0)).

(Here, BC
R(0) is the ball/disc of radius R centred at 0 in the

complex numbers.)



4. Construction: a Riesz Representation Theorem



Theorem. The (continuous) dual of Cb(X) can be identified
with the space M0(X) of finite complex Baire measures on X,
via the bijection

M0(X) → Cb(X)′, µ 7→
∫
X
(−) dµ.

⇝M0(X) ⊆ C(Cb(X)) also acquires a WH QCB topology in
which µn → µ iff for all fn → f ∈ Cb(X),∫

X
fn dµn →

∫
X
f dµ.

Fact. This coincides with the weak topology when X is a Polish
space and the (µn) are probability measures.
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Definition. Let X be a WH QCB space.

M(X) := span δ•(X) ⊆ M0(X) ⊆ C(Cb(X)).



Using cartesian closedness of QCBh, we obtain:

Theorem. The following maps are well-defined and continuous:

(−)∗ : C(X,Y ) → C(M(X),M(Y )), f 7→ f∗,

δ• : X → M(X), x 7→ δx,

I : M(M(X)) → M(X), π 7→

[
A 7→

∫
M(X)

µ(A) dπ(µ)

]
,

With this structure, M is an enriched monad on QCBh!
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Question: Is M commutative?

Yes!

Theorem. Let X,Y be WH QCB spaces, µ ∈ M(X),
ν ∈ M(Y ), f ∈ Cb(X × Y ). Then,∫

X

∫
Y
f(x, y) dν(y)dµ(x) =

∫
Y

∫
X
f(x, y) dµ(x)dν(y).

Proof. This holds for finitely supported measures and both sides
are continuous in (µ, ν).
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5. Finale: The Baire Probability Monad



Definition. For X a WH QCB space,

P(X) := {µ ∈ M(X) | µ probability measure }.

Theorem. With (−)∗, δ, I defined as for M, P is a strongly
affine, commutative enriched monad on QCBh.
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Takeaways:

1. In addition to the measurable-flavoured setting of
quasi-Borel spaces, there are topological settings for higher-order
probability theory.

2. Higher-order probability theory and deterministic marginal
independence are compatible.

3. In the topological setting, we have a category for
higher-order probability theory whose objects are familiar kinds
of spaces: we do not have to move beyond topological spaces.
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Thank you!

Further details:

Benedikt Peterseim. “On Monadic Vector-Valued Integration”. In:
MSc thesis, arXiv:2403.19681 (2024)

Peter Kristel and Benedikt Peterseim. “A Topologically Enriched
Probability Monad on the Cartesian Closed Category of CGWH

Spaces”. In: arXiv preprint arXiv:2404.08430 (2024)
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