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Motivation: | am bad at mathematics.



A prop is a strict symmetric monoidal category generated by a single object...
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A compact prop also allows for wires to be bent/unbent:

%:_, J—C%:—, XD =2 and C = CX.




Graphical linear algebra



Affine matrices: generators

Given a field K, finite dimensional affine transformations can be represented their
homogeneous coordinates matrices (T, S are matrices, 4, b are vectors):
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The prop of affine transformations between finite dimensional vector spaces is
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generated by the homogeneous coordinate matrices:




Affine matrices: axioms

Modulo the equations:

D

== Zp-=—=p Bp-=>
e -$B o~ & He-3 oe-

@)= -0-=-e0— =— :

(1p-eC = ic 100 =



Example of matrix multiplication

The following diagram can be simplified to a normal form:

Following the paths from left to right gives us the homogeneous coordinate matrix:
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Strictification and block matrices

Every prop can be strictified to an N-coloured prop:
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This allows us to define block matrices/vectors diagrammatically:
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Affine relations (Bonchi et al. [Bon+19],Bonchi et al. [BSZ17])

Given a field K, the compact prop of K-affine relations, AffRely, has:

e Morphisms n — m are affine subspaces S C K" & K™.
e Composition relational, for S:n—m, T : m — k

RoS={(X,2)eK"@Kr|3ycK™:(X,y)eS and (y,2) € R}

e Symmetric monoidal structure given by direct sum;
e Compact structure same as Rel.

AffRely is generated by the following relations, for all a € K:

[[m = (H ?)eK”%K’" aeK}
[[?‘\gaz"f_ = e K"g K™ Z bj + Z Ck=a
[-2] = ((b.2b) | be K} .




Modulo, the “spiders” mI;a :n and m:@-n being commutative, undirected and,
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forall a,b € K, c € K*.



The embedding AffMatg < AffRelg taking an affine transformation T : n — m to it's
graph {(x, TX) | X € K™} sends:
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Classical mechanics and
symplectic geometry



Electrical circuits: current and voltage

The extensional behaviour of an electrical circuits is characterised by how it transforms
current and voltage;

e Ohm’s law: The voltage around the node in a circuit is equal to the current
multiplied by the resistance.
e Kirchhoff’s current law: The sum of currents flowing into a node is equal to the

sum of currents flowing out of the node.

Example
Given a linear resistor with resistance r € R>9 on a wire with incoming current/votage

(20, Xp) and outgoing current/voltage (z;, x;):

e by KCL, currents equalize: zy = z1;

e by OL, the outgoing current becomes: x; = xg + zr.
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ng diagrams for electrical circuits, take |

Following Baez et al. [BCR18] and Baez and Fong [BF18], we can represent electrical
circuit components as real affine relations.
Using the string diagrams from Bonchi et al. [Bon+19], decompose a wire into a

current and voltage
carries current

2 2

carries voltage

...the resistor is represented as follows:

Example
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More string diagrams for electrical circuits, take |

Example
Ideal wire junctions sum currents, and equalize voltages:

Example
Constant voltage source does nothing to current and adds to the voltage:

What is the more conceptual picture? 13



Symplectic geometry

Classical mechanical systems can be represented by the configurations of abstract
positions Z and momenta X:

Classical mechanics | Z dZ /dt X dX/dt
Translation position  velocity momentum force
Electronic charge  current flux linkage voltage
Hydraulic volume  flow pressure momentum pressure
Thermal entropy entropy flow temperature momentum temperature

For n-particles in Euclidean space, the space of possible configurations of
positions/momenta R?" = R @& RY is the phase space.

Table adapted from Smith [Smi93, page 23, table 2.1] and Baez and Fong [BF18]
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Affine Lagrangian subspaces

Definition
Two configurations (Z, X), (¢, p) € K?" of phase-space are compatible when:

7 p—xX-G=0
The bilinear map
wn K K* 5K ((Z,X),(4,p)—Z-pF—X-§

is a symplectic form, and the phase space (K", w,) is a symplectic vector space.

An affine Lagrangian subspace is a maximally compatible affine subspace of a
symplectic vector space.

Remark (Baez and Fong [BF18], Baez et al. [BCR18])

Resistors, voltages sources and junctions of wires are affine Lagrangian subspaces.

15



Geometric interpretation of compatibility

Example
In the phase-space of a single particle, (K2, w;), the symplectic form measures area:

Compatible points are colinear, so affine Lagrangian subspaces are lines.

An affine Lagrangian subspaces don't represent single particle; but an ensemble of
particles flowing along a trajectory.
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Affine Lagrangian relations

Definition (Guillemin and Sternberg [GS79],Weinstein [Wei82])
The compact prop of affine Lagrangian relations AffLagRelk has:

e Morphisms n — m, given by (possibly empty) affine Lagrangian subspaces of
(K2 & K2™, wp — wpm : K21+m) g KAn+m) — K).
e Composition is given by relational composition.

e Symmetric monoidal structure is given by the direct sum.

Lemma
There is an embedding AffRely — AffLagRelx given

e on objects by: n+ 2n;

e on morphisms by: (S +3) — St & (S + a).

For the geometrically inclined, this is induced by the embedding of a vector space
R — T*(R") = (R")* & R" = R?" nto its cotangent bundle.
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Generators of affine Lagrangian relations (Comfort and Kissinger [CK22])

AffLagRely is generated by two spiders decorated by K?; interpreted in AffRelk as:
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Equations of affine Lagrangian relations (Booth et al. [BCC24b])

Modulo both spiders, being commutative, undirected nodes,

as well as for all a,b,c,d € K and z € K*:

generators: mm =1 B =-& -@ = @
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Interpreting electirical circuits

The embedding AffRely — AffLagRely takes:

~ —@— —(a, 0)—
mw.n — meon mxy-n — Mwgen —ta— — —1a—

Now that the position/momentum wires are bundled together, we have a more concise
description of electrical circuit components:

[oa]-m |- 4% [O]-<2
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Example: composing resistors in parallel

AffLagRely allows us to cleanly compose electrical circuits:

Example
Consider two resistors with resistances ry, 1 € R>% composed in parallel.

{707,1‘0:\ \0 roI\O r1 0, ’17 |'0 n
0, T 1 ‘0

'l

;l:ﬁ):

Electrons nondeterministically flow through both resistors, where they are impeded.

They extensionally behave like a resistor with resistance 1/(1/rp + 1/n). 21



Interpreting the two spiders:

This colour-swap rule corresponds to a change of refrence frame.

Where configurations of phase space can be represented as functions of position:

...or of momentum:
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Scalable spiders

We can define higher-dimensional spiders by induction on the number of wires k € N.

Take nmeN, abeK, v,weKKkand Ac Sym,(K).

EREM e =%

k41 k+1 k+1
m n =
=1l +
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Scalable identities
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Impedance matrix

Consider a network of resistors/voltage sources acting on n wires.

The extensional behaviour can be represented by a positive-definite 0 < R € Sym,(RR)
called the impedance matrix, and a voltage v € (R”?)"

(7, R) ~ >
—o—o—="_ :{(H[ oz l) |vz.>?e:<2"}
X X+ RZ4+V

The resistance between the jth and kth wire is rj , = r,; € R.

The change in voltage on wire j is v; € R.
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Composing networks of resistors in parallel

Black-boxed networks of resistors compose in parallel in the same way as single

resistors composed in parallel:

We don't know the internal structure of the two networks, but we still can compute

their extensional behaviour in parallel.
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