Part I:

Graphical Symplectic Algebra

Cole Comfort

Joint work with: Robert I. Booth, Titouan Carette

based on: arXiv:2401.07914

June 20, 2024

Motivation: I am bad at mathematics.

Props

A **prop** is a strict symmetric monoidal category generated by a single object...

A compact prop also allows for wires to be bent/unbent:

Graphical linear algebra

Affine matrices: generators

Given a field \mathbb{K} , finite dimensional affine transformations can be represented their **homogeneous coordinates matrices** (T, S are matrices, \vec{a}, \vec{b} are vectors):

$$\begin{bmatrix} T & \vec{a} \\ \hline 0 & 1 \end{bmatrix} \begin{bmatrix} S & \vec{b} \\ \hline 0 & 1 \end{bmatrix} = \begin{bmatrix} TS & T\vec{b} + \vec{a} \\ \hline 0 & 1 \end{bmatrix}$$

The prop of affine transformations between finite dimensional vector spaces is generated by the homogeneous coordinate matrices:

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1$$

4

Affine matrices: axioms

Modulo the equations:

Example of matrix multiplication

The following diagram can be simplified to a normal form:

Following the paths from left to right gives us the homogeneous coordinate matrix:

Strictification and block matrices

Every prop can be strictified to an \mathbb{N} -coloured prop:

This allows us to define block matrices/vectors diagrammatically:

Affine relations (Bonchi et al. [Bon+19], Bonchi et al. [BSZ17])

Given a field \mathbb{K} , the compact prop of \mathbb{K} -affine relations, AffRel $_{\mathbb{K}}$, has:

- Morphisms $n \to m$ are affine subspaces $S \subseteq \mathbb{K}^n \oplus \mathbb{K}^m$.
- **Composition** relational, for $S: n \to m$, $T: m \to k$

$$R \circ S := \{ (\vec{x}, \vec{z}) \in \mathbb{K}^n \oplus \mathbb{K}^k \mid \exists \vec{y} \in \mathbb{K}^m : (\vec{x}, \vec{y}) \in S \text{ and } (\vec{y}, \vec{z}) \in R \}$$

- Symmetric monoidal structure given by direct sum;
- Compact structure same as Rel.

AffRel $_{\mathbb{K}}$ is generated by the following relations, for all $a \in \mathbb{K}$:

$$\begin{bmatrix}
\vec{m} & \vec{n} \\
\vec{n}
\end{bmatrix} := \left\{ \begin{pmatrix} \begin{bmatrix} \vec{a} \\ \vdots \\ a \end{bmatrix}, \begin{bmatrix} \vec{a} \\ \vdots \\ a \end{bmatrix} \right\} \in \mathbb{K}^n \oplus \mathbb{K}^m \middle| a \in \mathbb{K} \right\}$$

$$\begin{bmatrix}
\vec{m} & \vec{n} \\
\vec{n}
\end{bmatrix} := \left\{ (\vec{b}, \vec{c}) \in \mathbb{K}^n \oplus \mathbb{K}^m \middle| \sum_{j=0}^{n-1} b_j + \sum_{k=0}^{m-1} c_k = a \right\}$$

$$\begin{bmatrix}
\vec{m} & \vec{n} \\
\vec{n}
\end{bmatrix} := \left\{ (b, ab) \mid b \in \mathbb{K} \right\}$$

Modulo, the "spiders" m = n and m = n being commutative, undirected and,

for all $a, b \in \mathbb{K}$, $c \in \mathbb{K}^{\times}$.

The embedding AffMat_K \hookrightarrow AffRel_K taking an affine transformation $T: n \to m$ to it's graph $\{(\vec{x}, T\vec{x}) \mid \vec{x} \in \mathbb{K}^m\}$ sends:

Classical mechanics and

anics an

symplectic geometry

Electrical circuits: current and voltage

The extensional behaviour of an electrical circuits is characterised by how it transforms current and voltage;

- **Ohm's law:** The voltage around the node in a circuit is equal to the current multiplied by the resistance.
- **Kirchhoff's current law:** The sum of currents flowing into a node is equal to the sum of currents flowing out of the node.

Example

Given a linear resistor with resistance $r \in \mathbb{R}^{>0}$ on a wire with incoming current/votage (z_0, x_0) and outgoing current/voltage (z_1, x_1) :

- by KCL, currents equalize: $z_0 = z_1$;
- by OL, the outgoing current becomes: $x_1 = x_0 + z_0 r$.

String diagrams for electrical circuits, take I

Following Baez et al. [BCR18] and Baez and Fong [BF18], we can represent electrical circuit components as real affine relations.

Using the string diagrams from Bonchi et al. [Bon+19], decompose a wire into a current and voltage

...the resistor is represented as follows:

Example

$$\begin{bmatrix} r \\ -\sqrt{N} \end{bmatrix} = \frac{2}{\sqrt{N}}$$

More string diagrams for electrical circuits, take I

Example

Ideal wire junctions sum currents, and equalize voltages:

Example

Constant voltage source does nothing to current and adds to the voltage:

What is the more conceptual picture?

Symplectic geometry

Classical mechanical systems can be represented by the configurations of abstract **positions** Z and **momenta** X:

Classical mechanics	Z	dZ/dt	X	dX/dt
Translation	position	velocity	momentum	force
Electronic	charge	current	flux linkage	voltage
Hydraulic	volume	flow	pressure momentum	pressure
Thermal	entropy	entropy flow	temperature momentum	temperature

For *n*-particles in Euclidean space, the space of possible configurations of positions/momenta $\mathbb{R}^{2n} \cong \mathbb{R}^n_Z \oplus \mathbb{R}^n_X$ is the **phase space**.

Table adapted from Smith [Smi93, page 23, table 2.1] and Baez and Fong [BF18]

Affine Lagrangian subspaces

Definition

Two configurations $(\vec{z}, \vec{x}), (\vec{q}, \vec{p}) \in \mathbb{K}^{2n}$ of phase-space are **compatible** when:

$$\vec{z} \cdot \vec{p} - \vec{x} \cdot \vec{q} = 0$$

The bilinear map

$$\omega_n: \mathbb{K}^{2n} \oplus \mathbb{K}^{2n} \to \mathbb{K} \quad ((\vec{z}, \vec{x}), (\vec{q}, \vec{p})) \mapsto \vec{z} \cdot \vec{p} - \vec{x} \cdot \vec{q}$$

is a symplectic form, and the phase space $(\mathbb{K}^{2n}, \omega_n)$ is a symplectic vector space.

An **affine Lagrangian subspace** is a *maximally compatible* affine subspace of a symplectic vector space.

Remark (Baez and Fong [BF18], Baez et al. [BCR18])

Resistors, voltages sources and junctions of wires are affine Lagrangian subspaces.

Geometric interpretation of compatibility

Example

In the phase-space of a single particle, (\mathbb{K}^2, ω_1) , the symplectic form measures area:

Compatible points are colinear, so affine Lagrangian subspaces are lines.

An affine Lagrangian subspaces don't represent single particle; but an ensemble of particles *flowing along a trajectory*.

Affine Lagrangian relations

Definition (Guillemin and Sternberg [GS79], Weinstein [Wei82]) The compact prop of affine Lagrangian relations AffLagRel_k has:

- Morphisms $n \to m$, given by (possibly empty) affine Lagrangian subspaces of $(\mathbb{K}^{2n} \oplus \mathbb{K}^{2m}, \omega_n \omega_m : \mathbb{K}^{2(n+m)} \oplus \mathbb{K}^{2(n+m)} \to \mathbb{K}).$
- Composition is given by relational composition.
- Symmetric monoidal structure is given by the direct sum.

Lemma

There is an embedding $\mathsf{AffRel}_\mathbb{K} \to \mathsf{AffLagRel}_\mathbb{K}$ given

- on objects by: $n \mapsto 2n$;
- on morphisms by: $(S + \vec{a}) \mapsto S^{\perp} \oplus (S + \vec{a})$.

For the geometrically inclined, this is induced by the embedding of a vector space $\mathbb{R}^n \hookrightarrow T^*(\mathbb{R}^n) \cong (\mathbb{R}^n)^* \oplus \mathbb{R}^n \cong \mathbb{R}^{2n}$ into its cotangent bundle.

Generators of affine Lagrangian relations (Comfort and Kissinger [CK22])

 $\mathsf{AffLagRel}_\mathbb{K}$ is generated by two spiders decorated by \mathbb{K}^2 ; interpreted in $\mathsf{AffRel}_\mathbb{K}$ as:

Equations of affine Lagrangian relations (Booth et al. [BCC24b])

Modulo both spiders, being commutative, undirected nodes,

as well as for all $a, b, c, d \in \mathbb{K}$ and $z \in \mathbb{K}^{\times}$:

Interpreting electirical circuits

The embedding $\mathsf{AffRel}_\mathbb{K} \hookrightarrow \mathsf{AffLagRel}_\mathbb{K}$ takes:

Now that the position/momentum wires are bundled together, we have a more concise description of electrical circuit components:

Example: composing resistors in parallel

 $\mathsf{AffLagRel}_{\mathbb{R}}$ allows us to cleanly compose electrical circuits:

Example

Consider two resistors with resistances $r_0, r_1 \in \mathbb{R}^{>0}$ composed in parallel.

Electrons nondeterministically flow through both resistors, where they are impeded.

They extensionally behave like a resistor with resistance $1/(1/r_0 + 1/r_1)$.

Interpreting the two spiders:

This colour-swap rule corresponds to a change of refrence frame.

Where configurations of phase space can be represented as functions of position:

$$\begin{bmatrix}
-a, b \\
-a
\end{bmatrix} = \begin{bmatrix}
b \\
-a
\end{bmatrix}$$

$$\begin{array}{c}
x = bz + a \\
0 \\
0 \\
0
\end{array}$$

...or of momentum:

Scalable spiders

We can define higher-dimensional spiders by induction on the number of wires $k \in \mathbb{N}$.

Take $n, m \in \mathbb{N}$, $a, b \in \mathbb{K}$, $\vec{v}, \vec{w} \in \mathbb{K}^k$ and $A \in \operatorname{Sym}_k(\mathbb{K})$.

Scalable identities

Impedance matrix

Consider a network of resistors/voltage sources acting on n wires.

The extensional behaviour can be represented by a positive-definite $0 \prec R \in \operatorname{Sym}_n(\mathbb{R})$ called the **impedance matrix**, and a voltage $\vec{v} \in (\mathbb{R}^{>0})^n$

$$\begin{bmatrix}
\vec{v}, R_n \\
\vec{v}
\end{bmatrix} = \left\{ \left(\begin{bmatrix} \vec{z} \\ \vec{x} \end{bmatrix}, \begin{bmatrix} \vec{z} \\ \vec{x} + R\vec{z} + \vec{v} \end{bmatrix} \right) \mid \forall \vec{z}, \vec{x} \in \mathbb{R}^n \right\}$$

The resistance between the *j*th and *k*th wire is $r_{j,k} = r_{k,j} \in \mathbb{R}$.

The change in voltage on wire j is $v_j \in \mathbb{R}$.

Composing networks of resistors in parallel

Black-boxed networks of resistors compose in parallel in the same way as single resistors composed in parallel:

We don't know the internal structure of the two networks, but we still can compute their extensional behaviour in parallel.