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Recall that the phase-space on n particles in Euclidean space is the symplectic vector
spaces (R?" = (R")z & (R")x, wy):

Classical mechanics | Z dZ/dt X dX /dt
Translation position  velocity momentum force
Electronic charge  current flux linkage voltage
Hydraulic volume  flow pressure mom'um pressure
Thermal entropy entropy flow temperature mom'um temperature

Where (maximally compatible, affinely constrained) mechanical circuits can be
represented by string diagrams for AffLagRelg.
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Quantized fragments of quantum mechanics

“Quantized fragments” of quantum mechanics admit nondeterministic phase-space

semantics:
Classical mechanics | Z dZ /dt X dX /dt
Translation position  velocity momentum force
Electronic charge current flux linkage voltage
Hydraulic volume  flow pressure mom’um pressure
Thermal entropy  entropy flow temperature mom'um temperature
Quantized mechanics | Z dZ /dt X dX /dt
Stabiliser QM
(finite dimensional) | Pauli Z  Pauli Z flow Pauli X Pauli X flow
Gaussian QM
(infinite dimensional) | § g flow p p flow
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Stabiliser quantum mechanics



The Pauli group

Finite dimensional quantum mechanics “lives in” (FVectc, ®,C)...

Definition
Fix some odd prime p. The state space of a quopit is the p-dimensional vector space:

Hy == (3(Z/dZ) = spanc{|0),--- ,|d — 1)}

Definition 7
The n-quopit Pauli group ;" C U(p") is generated under tensor product and
composition by:

.27

X|k) =|k+1) and Z|k):= e'7k|

k)

Lemma
.27

Because XZ = e ' P ZX every element of P," has the following form,

E n—1
x(@AW(Z,X) =€ P’ ®ZZJ’X"1
j=0

for some a € I, 2',)?'6117;. 80



Stabiliser states

Lemma
Up to scalars, a maximal Abelian subgroups S C P;" uniquely determines a

normalised state |S) : H" such that for all P € S, P|S) = |S).

n

Such states are called stabiliser states.

Remark

Two n-quopit Pauli operators x(a)W(Zz,x) and x(b)W(q, p) commute if and only if

wnl(Z,7), (d,5) = 0.

Corollary (Gross [Gro06])

There is a bijection:

{Maximal Abelian subgroups S C 73’;)':‘”} >{affine Lagrangian subspaces of S C (Ff,".w,,)}
={stabiliser states |S) : H,;"}

Given a Pauli x(a)W(Z,X) € S:

e Z are the positions; e X are the momenta; e a is determined by the affine shift.
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Phase-space representation of stabiliser states

Using the compact-closed structure of (FVectc, ®, C):

Definition
The compact prop of quopit stabiliser circuits is generated under tensor and

composition of the linear operators:

e All quopit stabiliser states 0 — n;
e Caps |j) ® |k) — §;j of type 2 — 0;
e The cup Zf:ol lj) @ |j) is already a stabiliser state of type 0 — 2.

The composition of AffLagRelr, agrees with that of in FVectc:

Theorem (Comfort and Kissinger [CK22])
AffLagRelg, isomorphic to quopit stabiliser circuits, modulo scalars.

Remark
The presentation of AffLagRelg, is the stabiliser ZX-calculus of Poor et al. [Po+23],
modulo scalars. 30



Picturing quantum teleportation

This is powerful enough to do quantum teleportation a la Abramsky and Coecke
[AC04] and Coecke and Kissinger [CK18]:

Alice (a, 0)

(a,0] (a,0)
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Continuous-variable quantum mechanics

Definition
The continuous-variable 1-D quantum state space is the Hilbert space:

@ = {o: R €| [ Il dx < oo

The morphisms are bounded linear maps (L?(R))®" — (L2(R))®™.

Definition L
The displacement operators Z, X : L?>(R) — L?(IR) are the CV-version of Paulis:

A

Z(s)op(r) = e?™p(r) and X(s)oy(r)=p(r—s) forall r,seR, ¢c }(R)

The n-qumode Heisenberg-Weyl group HWW“" is generated by displacement
operators by tensor product and composition, where every Heisenberg-Weyl operator
has the form:

n—1
W3 2\ - si27a S N .
MAW(ER) = €27 @ 2()X() .
J_



The failure of CV stabilizer states

Lemma
Affine Lagrangian subspaces of (R?",w,) are in bijection with maximally Abelian

subgroups of HW®", modulo scalars.

Problem: Given an affine Lagrangian subspace S C (R,w,), there is no non-zero state
|S) : (L2(R))®" such that W(Z,X)|S) for all (Z,X) € R"!

None of the states in AffLagRelz can be represented in Hilbert spaces!!!

{Maximal Abelian subgroups S C HW®"} ={affine Lagrangian subspaces of Sc (Rz",w,,)}
2#{stabiliser states |S) : (L*(R))®"}
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Fixing the CV stabiliser formalism

Definition )
An n-variate Gaussian distribution N (X, /i) consists of a positive semidefinite

covariance matrix £ € Sym_ (R) and a mean vector ji € R".
When X is positive-definite, N'(X, /i) admits a probability density function.

Proposition
A 2n-variate Gaussian probability distribution N'(Z, ji) on phase-space (R
corresponds to a bounded state on (L%(R))®" if and only if:
e Y is positive definite; } so that N'(X, i) has a density function
o det(Z) = ilg

2".w,,)

respects Heisenberg's uncertainty

/ . } rinciple for pure states
o X 4+ "] is positive semidefinite. AL &

—1,0

Call this a quantum Gaussian distribution.
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Gaussian distributions in phase space: the vacuum state

Example
The quantum vacuum state |0) : L2(R) is represented by the Gaussian distribution

®; on (Rz,wl):

®; is the unique quantum Gaussian distribution on (IR?,wi) invariant under rotation.

The Quantum Gaussian distribution ®,, for |0)“" has the same universal property of

being invariant under rotations (symplectic rotations SO(R, 2n) N Sp(RR, 2n)).

Phase-space diagrams generated by Strawberry Fields/matplotlib
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Explaining Heisenberg’s uncertainty principle

The isomorphisms in AffLagRelx have the form:

Definition

An affine automorphism on (K2",w,) is a symplectomorphism when it preserves the
symplectic form.

Lemma
Quantum Gaussian states are vacuum states acted on by affine symplectomorphisms.

Example
For n = 1, recall that wq : R2 ¢ R?2 — R measures area in R2.

2

Therefore, quantum Gaussian states on (R“, w1 ) are generated by acting on the

vacuum state with area-preserving affine isomorphisms.
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Picturing area-preservation

For example, we can squeeze the Gaussian distribution for the vacuum state state:
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Picturing area-preservation

But we can not make ®; more concentrated:

This violates Heisenberg's uncertainty principle.
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Approximating stabiliser states with Gaussian convolution

In phase-space CV stabiliser states do not have strictly positive definite covariance.
So they are not quantum Gaussian states.
However, they can be approximated with quantum Gaussian states:

Dirac delta distribution Gaussian density function
convolution by

(2] )
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The Gaussian ZX-calculus

Because the vacuum state is the unique permissible Gaussian distribution in
phase-space distribution invariant under rotation:

Theorem (Booth et al. [BCC24a])
The Gaussian state can be freely added to AffLagRely as a generator ®—, such that for

all ¥ € [0,27) and 0 € (—7, 7):

/ ) rotation of R? by

- (0,sin(0)] decomposed into three shears
\a, b] ' ’
&0 =

©— rotation of R? by 1, embedded
@— along AffRely — AffLagRelg

This contains both quantum Gaussian states and formal CV stabilisers.
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Quantum Gaussian states and complexification

There is an equivalent formulation using the complex numbers
Proposition
Quantum Gaussian states/CV stabilisers can be represented by affine Lagrangian
subspaces S + & C (C?",wp), where:
e 3 Js real;

o forall X €S, iwn(X,X) > 0.

In other, words, we can represent the vacuum state as follows:

Theorem (Booth et al. [BCC24a))
The Gaussian ZX-calculus is equivalent to adding the state mo— to the image of the
embedding AffLagRelp — AffLagRelc.
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Picturing Gaussian convolution

Dirac delta distribution Gaussian density function

convolution by

T p
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Picturing continuous-variable quantum teleportation

We can interpret the continuous-variable quantum teleportation algorithm of
Braunstein and Kimble [BK98]:

Alice \8,0 l’\'-a,Oj\ Bob ‘:IB
:?,Q‘ \8,0

\a Ol
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