
 Higher-Order DisCoCat

Peirce-Lambek-Montague Semantics

Alexis Toumi, Giovanni de Felice

ACT 2024, Oxford

Coecke Lambek

Montague Peirce

Outline

1. DisCoCat

2. Lambek grammars as categories

3. Montague semantics

4. Peirce: first-order logic with diagrams

5. Higher-Order DisCoCat

DisCoCat

1. Parse your sentence as a morphism in a closed (rigid) category

2. Map each type to a finite-dimensional vector space
and each word of type to a vector

3. Compute the meaning of the sentence as the image of the functor
, i.e. perform tensor network contraction

DisCoCat

Pros Cons

both symbolic and statistical hard to train on big datasets

intuitive graphical language curse of dimensionality

natural quantum implementation it's all linear maps!

Categorial Grammar: Context

Die syntaktische Konnexität, Ajdukiewicz (1935)

A quasi-arithmetical notation for syntactic description, Bar-Hillel (1953)

The Mathematics of Sentence Structure, Lambek (1958)

Categorial and Categorical Grammars, Lambek (1988)

Categorial Grammar: Definition (1/2)

Definition: Given a set , we define where for all
 we have and

Definition: A categorial grammar is a tuple where:

 is a set of words called the vocabulary

 is a set of basic types with the sentence type

 is a set of dictionary entries

In practice, this is extended with a set of ad-hoc rules .

Categorial Grammar: Definition (2/2)

Definition: The language of a categorial grammar is given by:

where is the free (non-symmetric) closed monoidal category, i.e.

Categorial Grammar: Example

Montague Semantics

English as a formal language, Montague (1970)

Formulae as simply-typed lambda terms

Let be the signature of first-order logic, i.e. and

Let be the free cartesian closed category it generates, i.e. where
the lambda terms reduce to first-order logic formulae.

Montague Semantics

Montague Semantics

Montague Semantics

Peirce: first-order logic as string diagrams

Hand-written as early as 1882, but remained unpublished until 1906.

Peirce: first-order logic as string diagrams

Compositional Diagrammatic First-Order Logic,
Haydon and Sobocinski (2020)

Peirce: first-order logic as string diagrams

Compositional Diagrammatic First-Order Logic,
Haydon and Sobocinski (2020)

Peirce: first-order logic as string diagrams

Diagrammatic Algebra of First Order Logic,
Bonchi, Di Giorgio, Haydon & Sobocinski (2024)

Diagrams as simply-typed lambda terms

Let be the signature of string diagrams generated by a monoidal
signature , i.e. and

Let be the free cartesian closed category it generates, i.e. where
the lambda terms reduce to string diagrams .

Higher-Order DisCoCat

Higher-Order DisCoCat

Higher-Order DisCoCat

Higher-Order DisCoCat

Higher-Order DisCoCat

Peirce-Lambek-Montague semantics

Peirce-Lambek-Montague semantics

Peirce-Lambek-Montague semantics

Peirce-Lambek-Montague semantics

Implementation (1/4): Formula

from discopy import frobenius, utils
from discopy.tensor import Dim, Tensor

@utils.factory # Ensure the subclass is closed under composition
class Formula(frobenius.Diagram):
 ty_factory = frobenius.PRO # i.e. natural numbers as objects

 def eval(self, size: int) -> Tensor[bool]:
 return frobenius.Functor(
 ob=lambda _: Dim(size),
 ar=lambda box: box.data,
 cod=Category(Dim, Tensor[bool]))(self)

class Cut(frobenius.Bubble, Formula): ...
class Ligature(frobenius.Spider, Formula): ...
class Predicate(frobenius.Box, Formula): ...

Id, Formula.bubble_factory = Formula.id, Cut
Tensor[bool].bubble = lambda self, **_: self.map(lambda x: not x)

Implementation (2/4): Grammar

from discopy.grammar.categorial import Ty, Word, Eval

n, p, s = Ty('n'), Ty('p'), Ty('s') # noun, phrase and sentence

man, island = (Word(noun, n) for noun in ("man", "island"))
_is = (Word(verb, (p >> s) << p) for verb in ("is"))
no, an = (Word(det, p << n) for det in ("no", "an"))

no_man_is_an_island = (no @ man @ _is @ an @ island
 >> Eval(p << n) @ ((p >> s) << p) @ Eval(p << n)
 >> p @ Eval((p >> s) << p) >> Eval(p >> s))

Implementation (3/4): Functor

from discopy import closed, python

M, I = (Predicate("M", 0, 1, data) for P, data in zip("MI", unary_predicates))

F = closed.Functor(
 cod=closed.Category(tuple[type, ...], python.Function),
 ob={s: Formula, n: Formula, p: Callable[[Formula], Formula]},
 ar={Alice: lambda: lambda f: A >> f,
 sleeps: lambda: lambda P: P(S.dagger()),
 man: lambda: M, island: lambda: I,
 big: lambda: lambda f: f @ B >> Ligature(2, 1, frobenius.PRO(1)),
 _is: lambda: lambda P: lambda Q: Q(P(Id(1)).dagger()),
 kills: lambda: lambda P: lambda Q: Q(P(K).dagger()),
 no: lambda: lambda f: lambda g: (f >> g).bubble(),
 some: lambda: lambda f: lambda g: f >> g,
 every: lambda: lambda f: lambda g: (f >> g.bubble()).bubble()})

Implementation (4/4): Evaluation

from random import choice

size = 42 # Generating a random interpretation to test our model
random_bits = lambda n=size: [choice([True, False]) for _ in range(n)]

unary_predicates = is_man, is_island = [random_bits() for _ in range(5)]

evaluate = lambda sentence: bool(F(sentence)().eval(size))

assert evaluate(no_man_is_an_island) == all(
 not is_man[x] or not is_island[x] for x in range(size))

Thank you!

