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DisCoCat 

1. Parse your sentence as a morphism in a closed (rigid) category 

2. Map each type  to a finite-dimensional vector space 
and each word  of type  to a vector 

3. Compute the meaning of the sentence as the image of the functor
, i.e. perform tensor network contraction



DisCoCat 

Pros Cons

both symbolic and statistical hard to train on big datasets

intuitive graphical language curse of dimensionality

natural quantum implementation it's all linear maps!



Categorial Grammar: Context

Die syntaktische Konnexität, Ajdukiewicz (1935)

A quasi-arithmetical notation for syntactic description, Bar-Hillel (1953)

The Mathematics of Sentence Structure, Lambek (1958)

Categorial and Categorical Grammars, Lambek (1988)



Categorial Grammar: Definition (1/2)

Definition: Given a set , we define  where for all
 we have  and 

Definition: A categorial grammar is a tuple  where:

 is a set of words called the vocabulary

 is a set of basic types with  the sentence type

 is a set of dictionary entries

In practice, this is extended with a set of ad-hoc rules .



Categorial Grammar: Definition (2/2)

Definition: The language of a categorial grammar  is given by:

where  is the free (non-symmetric) closed monoidal category, i.e.



Categorial Grammar: Example



Montague Semantics

English as a formal language, Montague (1970)



Formulae as simply-typed lambda terms

Let  be the signature of first-order logic, i.e.  and

Let  be the free cartesian closed category it generates, i.e. where
the lambda terms  reduce to first-order logic formulae.



Montague Semantics 



Montague Semantics 



Montague Semantics 



Peirce: first-order logic as string diagrams

Hand-written as early as 1882, but remained unpublished until 1906.



Peirce: first-order logic as string diagrams

Compositional Diagrammatic First-Order Logic,
Haydon and Sobocinski (2020)



Peirce: first-order logic as string diagrams

Compositional Diagrammatic First-Order Logic,
Haydon and Sobocinski (2020)



Peirce: first-order logic as string diagrams

Diagrammatic Algebra of First Order Logic,
Bonchi, Di Giorgio, Haydon & Sobocinski (2024)



Diagrams as simply-typed lambda terms

Let  be the signature of string diagrams generated by a monoidal
signature , i.e.  and

Let  be the free cartesian closed category it generates, i.e. where
the lambda terms  reduce to string diagrams .



Higher-Order DisCoCat 
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Peirce-Lambek-Montague semantics
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Peirce-Lambek-Montague semantics



Implementation (1/4): Formula

from discopy import frobenius, utils
from discopy.tensor import Dim, Tensor

@utils.factory  # Ensure the subclass is closed under composition
class Formula(frobenius.Diagram):
    ty_factory = frobenius.PRO  # i.e. natural numbers as objects

    def eval(self, size: int) -> Tensor[bool]:
        return frobenius.Functor(
            ob=lambda _: Dim(size),
            ar=lambda box: box.data,
            cod=Category(Dim, Tensor[bool]))(self)

class Cut(frobenius.Bubble, Formula): ...
class Ligature(frobenius.Spider, Formula): ...
class Predicate(frobenius.Box, Formula): ...

Id, Formula.bubble_factory = Formula.id, Cut
Tensor[bool].bubble = lambda self, **_: self.map(lambda x: not x)



Implementation (2/4): Grammar

from discopy.grammar.categorial import Ty, Word, Eval

n, p, s = Ty('n'), Ty('p'), Ty('s')  # noun, phrase and sentence

man, island = (Word(noun, n) for noun in ("man", "island"))
_is = (Word(verb, (p >> s) << p) for verb in ("is"))
no, an = (Word(det, p << n) for det in ("no", "an"))

no_man_is_an_island = (no @ man @ _is @ an @ island
    >> Eval(p << n) @ ((p >> s) << p) @ Eval(p << n)
    >> p @ Eval((p >> s) << p) >> Eval(p >> s))



Implementation (3/4): Functor

from discopy import closed, python

M, I = (Predicate("M", 0, 1, data) for P, data in zip("MI", unary_predicates))

F = closed.Functor(
    cod=closed.Category(tuple[type, ...], python.Function),
    ob={s: Formula, n: Formula, p: Callable[[Formula], Formula]},
    ar={Alice: lambda: lambda f: A >> f,
        sleeps: lambda: lambda P: P(S.dagger()),
        man: lambda: M, island: lambda: I,
        big: lambda: lambda f: f @ B >> Ligature(2, 1, frobenius.PRO(1)),
        _is: lambda: lambda P: lambda Q: Q(P(Id(1)).dagger()),
        kills: lambda: lambda P: lambda Q: Q(P(K).dagger()),
        no: lambda: lambda f: lambda g: (f >> g).bubble(),
        some: lambda: lambda f: lambda g: f >> g,
        every: lambda: lambda f: lambda g: (f >> g.bubble()).bubble()})



Implementation (4/4): Evaluation

from random import choice

size = 42  # Generating a random interpretation to test our model
random_bits = lambda n=size: [choice([True, False]) for _ in range(n)]

unary_predicates = is_man, is_island = [random_bits() for _ in range(5)]

evaluate = lambda sentence: bool(F(sentence)().eval(size))

assert evaluate(no_man_is_an_island) == all(
    not is_man[x] or not is_island[x] for x in range(size))



Thank you!


