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Introduction

▶ How to apply category theory to manifold learning and data visualization?
▶ Suppose X ⊂ Rn is a finite dataset. “Manifold learning” is about extracting a

manifold of dimension d ≪ n, around which the dataset is concentrated.
▶ Usually by generating Rd embeddings that can be thought of as local charts or

coordinates of the manifold.
▶ Those embeddings can help to interpolate the data, increase the computational

efficiency of downstream tasks and, when d = 2 or d = 3, serve as visualization.
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Metric spaces

▶ An uber-metric space (X, d) is a set X with a map d : X ×X → R≥0 ∪ {∞} s.t.
1. d(x, y) ≥ 0, and d(x, y) = 0 only if x = y;
2. d(x, y) = d(y, x); and
3. d(x, z) ≤ d(x, y) + d(y, z).

The category of uber-metric spaces UM has as objects uber-metric spaces and
as morphisms non-expansive maps, i.e. dY (f(x), f(x′)) ≤ dX(x, x′).

▶ One can split a metric space with N points into N metric spaces
{(X, di)}i∈{1,··· ,N}, where di is a “nearest-neighborhood metric”:

di(xi, xij ) = fi(d(xi, xij )) for j = 1, . . . k

di(x, x) = 0 for all x ∈ X, and di(xj , x) = ∞ else.
(1)

where xij is the j-th neighbor of xi ∈ X.
▶ The idea is that the finite distances in those neighbourhoods are close to the ones

on the underlying manifold around which one assumes the data distribution to be
concentrated

▶ But how to combine those neighborhoods?
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Fuzzy simplicial sets

▶ A fuzzy set S is a sheaf on I = [0, 1] for which all restriction maps
S(iab : a → b) : S(b) → S(a) are injections. Their category is denoted by Fuz.

▶ A classical fuzzy set is a pair (X, η) where X is a set and η : X → [0, 1] is a
function, called strength function.
Morphisms in cFuz are functions f : (X, η) → (Y, ξ) such that
ξ(f(x)) ≥ η(x) ∀x ∈ X.

▶ Fuzzy sets and classical fuzzy sets are isomorphic.
▶ ∆ denotes the simplicial indexing category. Its objects are given by finite totally

ordered sets [n] := {0, 1, . . . , n} with exactly n+ 1 elements and its morphisms
are order preserving maps (f : [n] → [m] s.t. f(a) ≥ f(b) if a ≥ b).

▶ A fuzzy simplicial set is simply a functor ∆op → Fuz.
One can also think of them as functors (∆× I)op → Sets.
Their category (morphisms are natural transformations) is denoted by sFuz.1

▶ Think of a simplicial set, where every simplex has a strength.
And the strength of a simplex is ≤ than the minimum of the strength of its faces.

1They were introduced by David Spivak.
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Adjunctions

▶ David Spivak showed that there exists an adjunction between UM and sFuz.

Re∆ : y(∆× I) → UM, Re∆(y(n, a)) :=

{
x ∈ Rn+1

∣∣∣∣ n+1∑
i=1

xi = − log(a)

}
,

▶ As UM has small colimits, this can be Kan-extended to

Re : sFuz → UM,

Re(S) : = colim(DS)

where DS = Re∆ ◦ y ◦ PS : El(S) → UM.

(2)

▶ UMAP uses a similar adjunction ReU : Fin-sFuz → FinEPMet:

ReU
∆(y(n, a)) := ({x0, · · · , xn}, da),

where da(xi, xj) :=

{
− log(a), if i ̸= j,

0, else.

(3)
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Adjunctions

▶ Suppose that Re∆ : y(∆× I) → C is any functor and that C has small colimits.
Then the following defines a functor:

Re : sFuz → C, Re(S) := colim(DS)

where DS = Re∆ ◦ y ◦ PS : El(S) → C.
(4)

and its right adjoint is

Sing(Y )(n, a) := HomC(Re∆(y(n, a)), Y ). (5)

▶ UM and EPMet both have small colimits. Hence there are infinitely many
adjunctions of the types discovered by D. Spivak and the authors of UMAP.

▶ One can show that SingU(X, d)(n, a) is equivalent to tuples [x0, · · · , xn] ∈ Xn+1

with strength at least a, which turns out to be a rescaled Vietoris-Rips complex!

▶ However, the colimit in (4) might be hard to compute.
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UMAP

▶ UMAP corresponds to the upper right path of the following diagram:

Met UMN
∗ sFuzN∗ c1FuzN∗ c1Fuz

UM Euc

split

mergeUM

SingN ctrN1 mergec1Fuz

embedding

embedding

▶ The embedding is obtained by minimizing the objective (fuzzy cross-entropy)

L({x}) := −
∑
i,j

{Gij log(H({x})ij) + (1−Gij) log(1−H({x})ij)} (6)

where G is the graph obtained from the high-dim dataset with N points and
H({x}) is a graph, obtained from the distances between N vectors x ∈ Rd.

▶ What if one makes use of the full adjunction, computing an explicit description of
mergeUM := Re ◦mergesFuz ◦SingN and uses a geometric embedding instead?
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The colimit in UM and EPMet

▶ The colimit of a small diagram D : I → UM is given by

colim(D) = (colim(FD), dcolim) (7)

where colim(FD) is the usual colimit in Sets, while dcolim is defined by

d∼([x], [x′]) = inf(dX(p1, q1) + · · ·+ dX(pn, qn)), (8)

where the infimum is taken over all pairs of sequences (p1, · · · , pn), (q1, · · · , qn)
of elements of X, such that

p1 ∼ x, qn ∼ x′, and pi+1 ∼ qi for all 1 ≤ i ≤ n− 1, (9)

and dX is defined by

dX(pi, qi) :=

{
dJ (pi, qi), if pi, qi ∈ FD(J)

∞, else.
(10)
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Metric realization

▶ We have ReU(S) ≃ Rec1(C1(tr1(S))), where:

▶ Rec1 : c1Fuz → UM is defined by Rec1(S) := (S0, d), where

S0 S1 S0
S(δ1) S(δ2) is a classical fuzzy graph, and

d(x, y) := inf
x=x1,··· ,xn=y

n−1∑
i=1

dmin(xi, xi+1), (11)

where dmin(x1, x2) := min{− log(ξ1(s)) | [x1, x2] ≃ s ∈ S1}.

▶ Intuitively: ReU(S) generates a metric space, in which the distances are geodesic
“graph-hopping” distances, along edges of tr1(S)

▶ We used this to show: ReU ◦ SingU ≃ idC, where C is either UM or EPMet.
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General merge operations in sFuz

▶ A t-conorm is a function T : [0, 1]× [0, 1] → [0, 1] that fulfills some axioms.
▶ Given a t-conorm T and two classical fuzzy sets (A, ξ1) and (A, ξ2), with the

same underlying set A, define mergecFuz : cFuz×Sets cFuz → cFuz by

mergecFuz((A, ξ1), (A, ξ2)) := (A, ξ),

where ξ(a) := T (ξ1(a), ξ2(a)).
(12)

▶ The isomorphism C : Fuz → cFuz then gives us mergeFuz,
▶ which in turn yields mergesFuz : sFuz×sSet sFuz → sFuz via

mergesFuz(S1, S2)(n, a) := mergeFuz(S1(n,−), S2(n,−))(a). (13)

▶ We proved that this is indeed a well-defined functor.
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The merge in UM

▶ We can finally describe mergeUM := ReU ◦ mergesFuz ◦ SingU:
▶ The functor

mergeUM := Re ◦ mergesFuz ◦ SingN : UM×Sets · · · ×Sets UM → UM.

(14)

can be given the following explicit description:

mergeUM((X, d1), · · · , (X, dN )) = (X, d), where

d(x, y) : = inf
x=x1,··· ,xn=y

n−1∑
i=1

(− log(TR(xi, xi+1))),
(15)

where TR is defined recursively in terms of a chosen t-conorm T .
▶ Combining this with a metric embedding method like classical or (non-)metric

multidimensional scaling (MDS) yields a new dimension reduction algorithm.
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IsUMap

Concise description of the method
Input: X ⊂ Rn, |X| < ∞, k ∈ N, m ≤ n.

1. Split X ⊂ Rn into N := |X| metric spaces (X, di), where di is defined by (1).

2. Apply the merge functor defined on the last slide, to obtain the metric space
(X, d). One can use Dijkstra’s algorithm to compute the infimum.

3. Embed (X, d) into Rm using classical or (non-)metric multidimensional scaling.

Output: Y ⊂ Rm, |Y | = |X|.

▶ Similar to UMAP because we proved that ReU ◦ SingU ≃ idUM and we used
mergeUM := ReU ◦ mergesFuz ◦ SingU.

▶ At the same time, can yield Isomap as special case, while adding the capabilities
to use arbitrary t-conorms, non-classical metric MDS and a uniformization of the
data distribution.

▶ Since it combines UMAP and Isomap and takes place entirely in the category
UM, we call our method IsUMap.
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Simulation results
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Outlook

▶ One could combine our method with Functorial manifold learning and Functorial
clustering via simplicial complexes as introduced by Dan Shiebler.

▶ As remarked in On UMAP’s true loss function by Damrich and Hamprecht, the
distortion in UMAP’s embedding is largely an effect of negative undersampling,
that is not captured by the formal theory describing UMAP. Hence, more effort is
needed to understand this effect in categorical terms, possibly by looking at it
through the “lens” of Backprop as a functor by Fong et al., or extensions of
Learners language by David Spivak, or ideas from Categorical systems theory by
David Jaz Myers or using Categorical cybernetics by Capucci, Gavranovic,
Hedges and Rischel, and others.

▶ There is also an interesting connection to TDA because SingU is closely related
to the Vietoris-Rips filtration, while objects in sFuz can also capture geometric (as
opposed to only topological) information.
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References and contact

▶ Our preprint: https://arxiv.org/abs/2406.11154
“Fuzzy simplicial sets and their application to
geometric data analysis”

▶ Our code: https://github.com/LUK4S-B/IsUMap

▶ Contact me anytime: lukas.barth@mis.mpg.de
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https://github.com/LUK4S-B/IsUMap
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