
Cost-sensitive computational
adequacy of higher-order recursion
in synthetic domain theory
MFPS 2024
June 21, 2024

YueNiu
Jon Sterling
Robert Harper
Carnegie Mellon University

yuen@cs.cmu.edu

mailto:yuen@cs.cmu.edu

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Acknowledgements

This work was funded by the United States Air Force

Office of Scientific Research and the National Science

Foundation. We thank Tristan Nguyen at AFOSR for

support. Yue Niu was supported by the Air Force

Research Laboratory through the NDSEG fellowship.

Views and opinions expressed are however those of

the authors only and do not necessarily reflect those

of AFOSR, AFRL, or NSF.

1 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Introduction

The story begins with a type theory calf developed to unify
cost-sensitive and functional verification [Niu+22].

• Functional: IO-behavior of programs, data structure
invariants

• Cost-sensitive: computational cost or resource usage (time,
space, etc.)

Functional properties are about if a program is correct,

cost-sensitive properties are about howmuch resource a program
uses.

2 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Introduction

calf supports a denotational style of cost analysis— connection to

operational semantics via a cost-sensitive computational
adequacy property à la Plotkin [Plo77].

Prior work: cost-sensitive adequacy for first-order

recursion [NH23].

This talk: cost-sensitive adequacy for higher-order recursion.

3 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Outline

Introduction to calf :

• Cost-sensitive and functional reasoning in calf

• Cost-sensitive adequacy property

Integrating higher-order recursion in calf :

• Introduction to synthetic domain theory (SDT)

• Cost-sensitive SDT

• Cost-sensitive adequacy in SDT

4 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Cost as an abstract effect

In calf , cost is an abstract effect F(A) supporting an operation
step : C→ F(1). Think of stepc as taking c abstract steps:

insertSort : list→ F(list)
insertSort(l) = . . . stepc; e . . .

Under the hood define F(A) = C × A and stepc = (c, ⋆). Can
reason about step’s equationally:

stepc1 ; stepc
2
= stepc1+c2

step0; e = e

5 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Functional reasoning in calf

How to reason about the purely functional properties of
cost-sensitive programs?

isSorted(insertSort(l)) ⇐⇒ isSorted(mergeSort(l))

Should be automatic because both are sorting algorithms. But

not because insertSort ̸= mergeSort due to presence of cost
structure!

6 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Cost as a phase

The functional semantics of (total) programs is naturally

modeled in Set.

Set is too “flat”: the cost effectC ×− : Set→ Set does not
distinguish data from cost structure.

calf : cost as a new dimension or phase.

7 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Cost structure as families

calf = the internal type theory of the category of families Set→

A type in Set→ is a cost-sensitive set equipped with a restriction

action to the purely functional component:

A•

A◦

πA

“cost-sensitive”

“functional”

Think Kripke/possibles world semantics over I = {◦ → •}.

8 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Functional vs. cost-sensitive phase

Presheaves over {◦ → •} exhibits a phase distinction:

• World at ◦ = functional phase

• World at • = cost-sensitive phase

• In cost-sensitive phase, insertSort ̸= mergeSort.

• In functional phase, insertSort = mergeSort.

Presheaf restriction • → ◦ trivializes/redacts cost structure!

9 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Modal types

Can introducemodal types that are either purely functional or
purely cost-sensitive.

Definition
A type is purely functional or function-modalwhen it is in the image
of the constant presheaves functor Set→ Set→.

Definition
A type is purely cost-sensitive or cost-modalwhen it is given by a
terminal map A→ 1.

10 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Cost effect with cost-modal types

Define F(A) by using a cost-modalmonoid objectC:

F(
A•

A◦
) =

N

1

×
A•

A◦
=

N × A•

A◦

11 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Internalization

Modal types can be phrased in the internal language of Set→.

Let ¶ : Ω be the intermediate proposition in Set→:

⊥ =
0

0

¶ =
0

1

⊤ =
1

1

Assuming ¶ = restricting to the functional phase.

12 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Internal characterization ofmodal types

Proposition
A type A is function-modal when (¶ → A) ∼= A.

Proposition
A type A is cost-modal when (¶ → A) ∼= 1.

In other words, a function-modal type “thinks” the functional

phase holds and a cost-modal type “thinks” the functional phase

is false.

13 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Constructingmodal types

Given A, ¶ → A is function-modal. Dually, construct a
cost-modal type ¶∨ A as follows:

A× ¶

A

π1

¶

¶∨ A

π2

∗

η

The cost modality ¶∨− quotients the type A to a unique point ∗
in the functional phase.

14 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Functional and cost reasoning, internally

Semantically, F(A) = (¶∨ C)× A.

Thus insertSort ̸= mergeSort since the cost monoid ¶∨ C is
nontrivial.

But, ¶ → ((¶∨ C) ∼= 1), so insertSort = mergeSort in the
functional phase!

15 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

calf vs. programming languages

Cost analysis in calf is equational or denotational.

Problems:

• How to relate cost analysis in calf to PLs with operational cost
semantics?

• How to reconcile general recursive functions in PLs with total
functions in calf ?

16 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

calf vs. programming languages

Solution:

• Enrich calf with partiality via synthetic domain theory.

• Relate PLs and calf by an internal, cost-sensitive computational
adequacy property.

Upshot:

• General recursive programming in calf

• Cost-sensitive generalization of Plotkin’s classic adequacy
property.

17 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Cost-sensitive computational adequacy

Example: take STLC equipped with the cost effect F(A). Internal
to calf , we have a languageL = (Ty : U, Tm : Ty→ U).

Internal denotational cost semantics ofL:

• J−KTy : Ty→ U

• (J−KTm)A : Tm(A)→ JAKTy

Note JF(A)K = C × JAK.

Internal operational cost semantics ofL:

• ⇓A ⊆ Tm(A)× C × Tm(A)

18 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Cost-sensitive computational adequacy

Definition
A language satisfies cost-sensitive computational adequacy
when for all e : F(2), JeK =C×JAK (c, JvK) if and only if e ⇓c v.

Classic Plotkin adequacy: J−K carves out functions that are
definable operationally.

Cost-sensitive adequacy: J−K carves out calf functions that are
definable operationally in a cost-reflecting way.

19 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Cost-sensitive adequacy for higher-order
recursion

Prior work: L = Algol-like languages with while loops [NH23].

This work: L = PCF.

Method: synthetic domain theory

20 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Recursion in type theory

To define the denotational cost semantics of PCF in calf , we
need a notion of partial functions in type theory.

Attempt: model calf in presheaves valued inωcpo’s:ωCPO→
.

Unfortunately not a model of dependent type theory.

21 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Synthetic domain theory

Integrate higher-order recursion into type theory by means of

synthetic domain theory (SDT):

• Intuitionistic type theory

• Class of predomains

• All definable predomain maps automatically continuous

Concretely: a topos E equipped with a full subcategory Predom.

22 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Axioms of SDT

To start, we need an object called the dominance that serves as the
classifier of the support of partial maps.

Definition
A dominance subobject Σ ↪→ Ω that is closed under⊤ : Ω and

dependent sums.

Frequently Σ is also required to be closed under⊥ : Ω.

The dominance also has the dual role as the classifier of

Scott-open subsets. For example, inωCPO Σ = {0 ⩽ 1}.

23 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Lifting structure

The dominance Σ induces a lifting structure L(A) = Σϕ:Σ.ϕ→ A:
partial maps A

Σ←−↩ D→ B as total maps A→ L(B).

Lifting induces an incidence relationω ↪→ ω including the

initial lift algebraω into the final lift coalgebraω.

Think ofω ↪→ ω as a figure shape that we use to state the
completeness properties of predomains.

24 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Predomains in SDT

A predomain has the unique extension property alongω ↪→ ω:

ω

X

ω

Synthetic counterpart toωcpos, which extend along the figure

shape {0 ⩽ 1 ⩽ . . . } ↪→ {0 ⩽ 1 ⩽ · · · ⩽ ∞}.

25 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Model of SDT

Amodel of SDT is given by a topos E equipped with a predomain
dominance Σ.

Every such model induces a full subcategory of predomains that

is a reflective exponential ideal:

• Closed under limits and exponentials: types of PCF

• All colimits exist: used to define the cost-modal type ¶∨ C

• Every endomap of domains has a fixed-point: fix operator

26 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Model of SDT

Remark: the choice of the dominance is critical — taking

D = {⊥,⊤} trivializes partiality and takingΩ itself results in

maps that are not continuous; commonly we haveD ⊊ Σ ⊊ Ω.

27 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Denotational semantics of PCF in cost-sensitive
SDT

To interpret PCFwith the cost effect F(A), need a propositionϕ
for the functional phase:

Definition
Amodel of SDTwith a phase distinction is a model of SDT (E, Σ, ϕ)
whereϕ is a Σ-proposition.

Semantically: JF(A)K = L(C × JAK)withC cost-modal.

Needϕ : Σ to ensureϕ∨ A is a predomain when A is one.

28 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Operational semantics of PCF

Our proof of computational adequacy relies on the fact that

e ⇓c v is a Σ-proposition.

Define the operational semantics as a partial function

eval : Tm(F(A))→ Tm(F(A))→ L(C):

eval(e, v) =

{
c⊞ eval(e ′, v) out(e) = inr · (c, e ′)
(e = v, λu.0) out(e) = inl · ⋆

In the above, we write out : Tm(A)→ 1+ (C × Tm(A)) for the
one step transition relation, and−⊞− for the cost algebra map.

29 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Logical relation for computational adequacy

Define a family of relations�A ⊆ JAK× Tm(A) between the
syntax and semantics of PCF.

A technical point is the definition of�F(A):

e (R⇒ S) e ′ = ∀[a R a ′] (e a) S (e ′ a ′)
e�FA e ′ = ∀[f (�A ⇒ ⩽) f ′] e; f ⩽ e ′; f ′

In the above we write e ⩽ e ′ for the specialization order or
definedness order on F(1) ∼= L(C).

Ensures that (−�F(A) e ′) ⊆ JF(A)K is always a sub-predomain or
admissible.

30 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Fundamental lemma and computational
adequacy

Wemay prove the fundamental lemma of the logical relation:

Theorem
Given Γ ⊢ e : A, we have Γ ⊢ JeK �A e.

Cost-sensitive computational adequacy follows directly from the

fundamental lemma:

Theorem
Given e : F(1), we have that JeK = eval(e, ⋆).

31 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Model of cost-sensitive SDT

To incorporate cost structure as a phase distinction, define a

model of SDT fibred over Set→.

Isolate a (small) category C of internal dcpos in Set→.

• Presheaves on C is almost a model of SDT.

• Restrict to sheaves on C for the extensive coverage: preserves
∅ and+.

Theorem
The category of (internal) sheaves onC furnishes amodel of SDT such
that the functional phase proposition¶ : C is preserved by the Yoneda
embedding.

32 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Related work

• Computational adequacy in SDT [Sim99; Sim04]

• Relative sheaf models of SDT [SH22]

• Rooted in the type-theoretic framework calf

• Extended the results of Niu and Harper [NH23] to PCF

• Denotational cost semantics based on prior work on effectful
PCF [Kav+19]

33 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Conclusion

• Integrated higher-order recursion into calf type theory

• Internal cost-sensitive computational adequacy theorem for

PCF

• Connecting denotational and operational reasoning for cost
analysis in type theory

• Relative sheaf model of the function-cost phase distinction

34 / 40

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Future work

• Recursive types [Sim04]

• Relating internal and external cost-sensitive adequacy

35 / 40

Thanks for listening!

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

References I

[1] G. A. Kavvos, EdwardMorehouse, Daniel R. Licata, and

Norman Danner. “Recurrence Extraction for Functional

Programs through Call-by-Push-Value”. In: Proceedings of
the ACM on Programming Languages 4.POPL (Dec. 2019). doi:
10.1145/3371083.

[2] Yue Niu and Robert Harper. “A Metalanguage for

Cost-Aware Denotational Semantics”. In: 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS).
2023, pp. 1–14. doi: 10.1109/LICS56636.2023.10175777.

37 / 40

https://doi.org/10.1145/3371083
https://doi.org/10.1109/LICS56636.2023.10175777

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

References II

[3] Yue Niu, Jonathan Sterling, Harrison Grodin, and

Robert Harper. “A Cost-Aware Logical Framework”. In:

Proceedings of the ACM on Programming Languages 6.POPL
(Jan. 2022). doi: 10.1145/3498670. arXiv: 2107.04663

[cs.PL].

[4] Gordon D. Plotkin. “LCF considered as a programming

language”. In:Theoretical Computer Science 5.3 (1977),
pp. 223–255. issn: 0304-3975. doi:

10.1016/0304-3975(77)90044-5.

38 / 40

https://doi.org/10.1145/3498670
https://arxiv.org/abs/2107.04663
https://arxiv.org/abs/2107.04663
https://doi.org/10.1016/0304-3975(77)90044-5

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

References III

[5] Alex Simpson. “Computational adequacy for recursive

types in models of intuitionistic set theory”. In: Annals of
Pure and Applied Logic 130.1 (2004). Papers presented at the
2002 IEEE Symposium on Logic in Computer Science

(LICS), pp. 207–275. issn: 0168-0072. doi:

10.1016/j.apal.2003.12.005.

[6] Alex K. Simpson. “Computational Adequacy in an

Elementary Topos”. In: Computer Science Logic. Ed. by
Georg Gottlob, Etienne Grandjean, and Katrin Seyr.

Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 1999, pp. 323–342. isbn: 978-3-540-48855-2. doi:

10.1007/10703163_22.

39 / 40

https://doi.org/10.1016/j.apal.2003.12.005
https://doi.org/10.1007/10703163_22

Introduction Background Cost-sensitive synthetic domain theory Conclusion References

References IV

[7] Jonathan Sterling and Robert Harper. “Sheaf semantics of

termination-insensitive noninterference”. In: 7th
International Conference on Formal Structures for Computation
andDeduction (FSCD 2022). Ed. by Amy P. Felty. Vol. 228.
Leibniz International Proceedings in Informatics (LIPIcs).

Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, Aug. 2022, 5:1–5:19. isbn:

978-3-95977-233-4. doi: 10.4230/LIPIcs.FSCD.2022.5.

arXiv: 2204.09421 [cs.PL].

40 / 40

https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://arxiv.org/abs/2204.09421

	Introduction
	Background
	Cost-sensitive synthetic domain theory
	Conclusion
	References

