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Introduction

The story begins with a type theory calf developed to unify
cost-sensitive and functional verification [Niu+22].

• Functional: IO-behavior of programs, data structure
invariants

• Cost-sensitive: computational cost or resource usage (time,
space, etc.)

Functional properties are about if a program is correct,

cost-sensitive properties are about howmuch resource a program
uses.
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Introduction

calf supports a denotational style of cost analysis— connection to

operational semantics via a cost-sensitive computational
adequacy property à la Plotkin [Plo77].

Prior work: cost-sensitive adequacy for first-order

recursion [NH23].

This talk: cost-sensitive adequacy for higher-order recursion.
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Outline

Introduction to calf :

• Cost-sensitive and functional reasoning in calf

• Cost-sensitive adequacy property

Integrating higher-order recursion in calf :

• Introduction to synthetic domain theory (SDT)

• Cost-sensitive SDT

• Cost-sensitive adequacy in SDT
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Cost as an abstract effect

In calf , cost is an abstract effect F(A) supporting an operation
step : C→ F(1). Think of stepc as taking c abstract steps:

insertSort : list→ F(list)
insertSort(l) = . . . stepc; e . . .

Under the hood define F(A) = C × A and stepc = (c, ⋆). Can
reason about step’s equationally:

stepc1 ; stepc
2
= stepc1+c2

step0; e = e
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Functional reasoning in calf

How to reason about the purely functional properties of
cost-sensitive programs?

isSorted(insertSort(l)) ⇐⇒ isSorted(mergeSort(l))

Should be automatic because both are sorting algorithms. But

not because insertSort ̸= mergeSort due to presence of cost
structure!
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Cost as a phase

The functional semantics of (total) programs is naturally

modeled in Set.

Set is too “flat”: the cost effectC ×− : Set→ Set does not
distinguish data from cost structure.

calf : cost as a new dimension or phase.
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Cost structure as families

calf = the internal type theory of the category of families Set→

A type in Set→ is a cost-sensitive set equipped with a restriction

action to the purely functional component:

A•

A◦

πA

“cost-sensitive”

“functional”

Think Kripke/possibles world semantics over I = {◦ → •}.
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Functional vs. cost-sensitive phase

Presheaves over {◦ → •} exhibits a phase distinction:

• World at ◦ = functional phase

• World at • = cost-sensitive phase

• In cost-sensitive phase, insertSort ̸= mergeSort.

• In functional phase, insertSort = mergeSort.

Presheaf restriction • → ◦ trivializes/redacts cost structure!

9 / 40



Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Modal types

Can introducemodal types that are either purely functional or
purely cost-sensitive.

Definition
A type is purely functional or function-modalwhen it is in the image
of the constant presheaves functor Set→ Set→.

Definition
A type is purely cost-sensitive or cost-modalwhen it is given by a
terminal map A→ 1.

10 / 40



Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Cost effect with cost-modal types

Define F(A) by using a cost-modalmonoid objectC:

F(
A•

A◦
) =

N

1

×
A•

A◦
=

N × A•

A◦
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Internalization

Modal types can be phrased in the internal language of Set→.

Let ¶ : Ω be the intermediate proposition in Set→:

⊥ =
0

0

¶ =
0

1

⊤ =
1

1

Assuming ¶ = restricting to the functional phase.
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Internal characterization ofmodal types

Proposition
A type A is function-modal when (¶ → A) ∼= A.

Proposition
A type A is cost-modal when (¶ → A) ∼= 1.

In other words, a function-modal type “thinks” the functional

phase holds and a cost-modal type “thinks” the functional phase

is false.
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Constructingmodal types

Given A, ¶ → A is function-modal. Dually, construct a
cost-modal type ¶∨ A as follows:

A× ¶

A

π1

¶

¶∨ A

π2

∗

η

The cost modality ¶∨− quotients the type A to a unique point ∗
in the functional phase.
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Functional and cost reasoning, internally

Semantically, F(A) = (¶∨ C)× A.

Thus insertSort ̸= mergeSort since the cost monoid ¶∨ C is
nontrivial.

But, ¶ → ((¶∨ C) ∼= 1), so insertSort = mergeSort in the
functional phase!
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calf vs. programming languages

Cost analysis in calf is equational or denotational.

Problems:

• How to relate cost analysis in calf to PLs with operational cost
semantics?

• How to reconcile general recursive functions in PLs with total
functions in calf ?
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calf vs. programming languages

Solution:

• Enrich calf with partiality via synthetic domain theory.

• Relate PLs and calf by an internal, cost-sensitive computational
adequacy property.

Upshot:

• General recursive programming in calf

• Cost-sensitive generalization of Plotkin’s classic adequacy
property.
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Cost-sensitive computational adequacy

Example: take STLC equipped with the cost effect F(A). Internal
to calf , we have a languageL = (Ty : U, Tm : Ty→ U).

Internal denotational cost semantics ofL:

• J−KTy : Ty→ U

• (J−KTm)A : Tm(A)→ JAKTy

Note JF(A)K = C × JAK.

Internal operational cost semantics ofL:

• ⇓A ⊆ Tm(A)× C × Tm(A)
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Cost-sensitive computational adequacy

Definition
A language satisfies cost-sensitive computational adequacy
when for all e : F(2), JeK =C×JAK (c, JvK) if and only if e ⇓c v.

Classic Plotkin adequacy: J−K carves out functions that are
definable operationally.

Cost-sensitive adequacy: J−K carves out calf functions that are
definable operationally in a cost-reflecting way.
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Cost-sensitive adequacy for higher-order
recursion

Prior work: L = Algol-like languages with while loops [NH23].

This work: L = PCF.

Method: synthetic domain theory
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Recursion in type theory

To define the denotational cost semantics of PCF in calf , we
need a notion of partial functions in type theory.

Attempt: model calf in presheaves valued inωcpo’s:ωCPO→
.

Unfortunately not a model of dependent type theory.
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Synthetic domain theory

Integrate higher-order recursion into type theory by means of

synthetic domain theory (SDT):

• Intuitionistic type theory

• Class of predomains

• All definable predomain maps automatically continuous

Concretely: a topos E equipped with a full subcategory Predom.
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Axioms of SDT

To start, we need an object called the dominance that serves as the
classifier of the support of partial maps.

Definition
A dominance subobject Σ ↪→ Ω that is closed under⊤ : Ω and

dependent sums.

Frequently Σ is also required to be closed under⊥ : Ω.

The dominance also has the dual role as the classifier of

Scott-open subsets. For example, inωCPO Σ = {0 ⩽ 1}.

23 / 40



Introduction Background Cost-sensitive synthetic domain theory Conclusion References

Lifting structure

The dominance Σ induces a lifting structure L(A) = Σϕ:Σ.ϕ→ A:
partial maps A

Σ←−↩ D→ B as total maps A→ L(B).

Lifting induces an incidence relationω ↪→ ω including the

initial lift algebraω into the final lift coalgebraω.

Think ofω ↪→ ω as a figure shape that we use to state the
completeness properties of predomains.
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Predomains in SDT

A predomain has the unique extension property alongω ↪→ ω:

ω

X

ω

Synthetic counterpart toωcpos, which extend along the figure

shape {0 ⩽ 1 ⩽ . . . } ↪→ {0 ⩽ 1 ⩽ · · · ⩽ ∞}.
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Model of SDT

Amodel of SDT is given by a topos E equipped with a predomain
dominance Σ.

Every such model induces a full subcategory of predomains that

is a reflective exponential ideal:

• Closed under limits and exponentials: types of PCF

• All colimits exist: used to define the cost-modal type ¶∨ C

• Every endomap of domains has a fixed-point: fix operator
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Model of SDT

Remark: the choice of the dominance is critical — taking

D = {⊥,⊤} trivializes partiality and takingΩ itself results in

maps that are not continuous; commonly we haveD ⊊ Σ ⊊ Ω.
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Denotational semantics of PCF in cost-sensitive
SDT

To interpret PCFwith the cost effect F(A), need a propositionϕ
for the functional phase:

Definition
Amodel of SDTwith a phase distinction is a model of SDT (E, Σ, ϕ)
whereϕ is a Σ-proposition.

Semantically: JF(A)K = L(C × JAK)withC cost-modal.

Needϕ : Σ to ensureϕ∨ A is a predomain when A is one.
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Operational semantics of PCF

Our proof of computational adequacy relies on the fact that

e ⇓c v is a Σ-proposition.

Define the operational semantics as a partial function

eval : Tm(F(A))→ Tm(F(A))→ L(C):

eval(e, v) =

{
c⊞ eval(e ′, v) out(e) = inr · (c, e ′)
(e = v, λu.0) out(e) = inl · ⋆

In the above, we write out : Tm(A)→ 1+ (C × Tm(A)) for the
one step transition relation, and−⊞− for the cost algebra map.
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Logical relation for computational adequacy

Define a family of relations�A ⊆ JAK× Tm(A) between the
syntax and semantics of PCF.

A technical point is the definition of�F(A):

e (R⇒ S) e ′ = ∀[a R a ′] (e a) S (e ′ a ′)
e�FA e ′ = ∀[f (�A ⇒ ⩽) f ′] e; f ⩽ e ′; f ′

In the above we write e ⩽ e ′ for the specialization order or
definedness order on F(1) ∼= L(C).

Ensures that (−�F(A) e ′) ⊆ JF(A)K is always a sub-predomain or
admissible.
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Fundamental lemma and computational
adequacy

Wemay prove the fundamental lemma of the logical relation:

Theorem
Given Γ ⊢ e : A, we have Γ ⊢ JeK �A e.

Cost-sensitive computational adequacy follows directly from the

fundamental lemma:

Theorem
Given e : F(1), we have that JeK = eval(e, ⋆).
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Model of cost-sensitive SDT

To incorporate cost structure as a phase distinction, define a

model of SDT fibred over Set→.

Isolate a (small) category C of internal dcpos in Set→.

• Presheaves on C is almost a model of SDT.

• Restrict to sheaves on C for the extensive coverage: preserves
∅ and+.

Theorem
The category of (internal) sheaves onC furnishes amodel of SDT such
that the functional phase proposition¶ : C is preserved by the Yoneda
embedding.
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Related work

• Computational adequacy in SDT [Sim99; Sim04]

• Relative sheaf models of SDT [SH22]

• Rooted in the type-theoretic framework calf

• Extended the results of Niu and Harper [NH23] to PCF

• Denotational cost semantics based on prior work on effectful
PCF [Kav+19]
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Conclusion

• Integrated higher-order recursion into calf type theory

• Internal cost-sensitive computational adequacy theorem for

PCF

• Connecting denotational and operational reasoning for cost
analysis in type theory

• Relative sheaf model of the function-cost phase distinction
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Future work

• Recursive types [Sim04]

• Relating internal and external cost-sensitive adequacy
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