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Outline

Outline

In modern algebraic approaches to the semantics of
programming languages, data types and computational effects,
models often involve an intricate interplay between algebraic
features and relational features.
Essential result in such algebraic approaches: Birkhoff’s Variety
Theorem (also known as the HSP Theorem).
Examples of relational features:

order (ordered algebras due to Bloom),
distance (quantitative algebras due to Mardare, Panangaden, and
Plotkin),
generalized distance (generalized quantitative algebras due to
Mio, Sarkis, and Vignudelli).

We provide an intuitive common roof of these scenarios.
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Birkhoff’s Variety Theorem

Birkhoff’s Variety Theorem

Let Σ be a finitary signature, i.e. a set whose elements are called
operations and each of them has an associated finite arity (a natural
number).
An algebra is a set A together with operations σA : An → A for each
n-ary σ ∈ Σ.

Given a set of equations t1 = t2, we can restrict ourselves to algebras
satisfying these equations, e.g. for semigroups one can use the
equation x · (y · z) = (x · y) · z.
In general, a class of algebras that can be determined by a set of
equations is called a variety of algebras.
Examples of varieties: semigroups, groups, vector spaces.
Non-example: fields.
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Birkhoff’s Variety Theorem

A homomorphism is a function between algebras that preserves
operations. Given a set of algebras one can form their product
(cartesian product with operations defined component-wise). Given
an algebra, its subset is a subalgebra if it is closed under operations.
Finally, a quotient is simply a surjective homomorphism.

Birkhoff’s Variety Theorem.
A class of algebras is a variety iff it is closed under products,
subalgebras, and quotients.

Reminder: A class being closed under quotients means that if A is in
the class and A↠ B is a quotient, then B is in the class.
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Relational Features

Relational Features
Often, it is useful to have relational features on the algebra and to
have the operations compatible with these features. On the side of
equations we will work with the c-clustered equations:
Ordered Algebras:

xi ≤ yi (i ∈ I) ⊢ t1 ≤ t2 or xi ≤ yi (i ∈ I) ⊢ t1 = t2,

Quantitative Algebras:

xi =εi yi (i ∈ I) ⊢ t1 =ε t2,

Generalized Quantitative Algebras:

xi =εi yi (i ∈ I) ⊢ t1 =ε t2 or xi =εi yi (i ∈ I) ⊢ t1 = t2,

where xi, yi are variables, t1, t2 are terms, εi, ε ∈ [0,∞], and a certain
connectedness condition is imposed on the variables xi, yi .
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Common Roof

Common Roof

Definition.
A (finitary) relational signature S is a set of relation symbols with
associated positive arity ar(R) ∈ N+ for each R ∈ S . An S -structure
(A, (RA)R∈S ) is given by a set A equipped with an n-ary relation
RA ⊆ An for every n-ary relation symbol R ∈ S .
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Common Roof

Definition.
A morphism h : A→ B of S -structures is a relation-preserving map:
for each n-ary R ∈ S and a1, . . . , an ∈ A,

RA(a1, . . . , an) =⇒ RB(h(a1), . . . , h(an)).

Conversely, a map h : A→ B is said to reflect relations if for each n-ary
R ∈ S and a1, . . . , an ∈ A,

RA(a1, . . . , an) ⇐= RB(h(a1), . . . , h(an)).

An embedding is an injective map m : A↣ B that both preserves and
reflects relations.

Notation.
We denote the category of S -structures and their morphisms by
Str(S ).
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Common Roof

Definition.
An infinitary Horn clause over a set X of variables is an expression of
either of the types

Ri(xi,1, . . . , xi,ni ) (i ∈ I) ⊢ R(x1, . . . , xn), (4.1)

Ri(xi,1, . . . , xi,ni ) (i ∈ I) ⊢ x1 = x2, (4.2)

where (a) I is a set, (b) xk, xi,k ∈ X for all indices i, k, and (c) Ri (i ∈ I) and R
are relation symbols in S with arities ni and n, respectively.

Definition.
Let A be an S -structure.

1. The structure A satisfies the clause (4.1) if for every map h : X → A,

(Ri)A(h(xi,1), . . . , h(xi,ni )) for all i ∈ I implies RA(h(x1), . . . , h(xn)).

2. Similarly, A satisfies the clause (4.2) if for every map h : X → A,

(Ri)A(h(xi,1), . . . , h(xi,ni )) for all i ∈ I implies h(x1) = h(x2).
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Common Roof

Notation.
From now on, we fix a relational signature S and a set Ax of
infinitary Horn clauses over S . We denote the full subcategory of
structures satisfying all clauses in Ax by

C ↪→ Str(S ).
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Common Roof

Example.
Our leading example is that of generalized metric spaces [MSV22]. A
fuzzy relation on a set A is a map d : A× A→ [0, 1]. Let AxGM be a
fixed subset of the following axioms:

∀a ∈ A : d(a, a) = 0 (Refl)
∀a, b ∈ A : d(a, b) = 0 =⇒ a = b (Pos)
∀a, b ∈ A : d(a, b) = d(b, a) (Sym)

∀a, b, c ∈ A : d(a, c) ≤ d(a, b) + d(b, c) (Tri)
∀a, b, c ∈ A : d(a, c) ≤ max{d(a, b), d(b, c)} (Max)

A generalized metric space is a set A with a fuzzy relation
dA : A× A→ [0, 1], subject to the axioms in AxGM. A map h : A→ B
between generalized metric spaces is nonexpansive if
dB(h(a), h(a′)) ≤ dA(a, a′) for a, a′ ∈ A. We let GMet denote the
category of generalized metric spaces and nonexpansive maps.
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Common Roof

Example (continued).
We can regard generalized metric spaces as relational structures as
follows. Consider the relational signature S = {=ε: ε ∈ [0, 1] }
where ar(=ε) = 2 for each ε ∈ [0, 1]. Let Ax be the corresponding
subset of the following Horn clauses, where ε, ε′ ∈ [0, 1]:

⊢ x =0 x (Refl′)
x =0 y ⊢ x = y (Pos′)
x =ε y ⊢ y =ε x (Sym′)

x =ε y, y =ε′ z ⊢ x =ε+ε′ z (ε+ ε′ ≤ 1) (Tri′)
x =ε y, y =ε′ z ⊢ x =max{ε,ε′} z (Max′)

x =ε y ⊢ x =ε′ y (ε < ε′) (Up)
x =ε′ y (ε′ > ε) ⊢ x =ε y (Arch)

Then C = GMet.
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Common Roof

Examples.
The category Set of sets and functions is specified by the empty
relational signature and the empty set of axioms.
The category Pos of partially ordered sets (posets) and
monotone maps is specified by the relational signature S
consisting of a single binary relation symbol ≤ and the axioms

⊢ x ≤ x,
x ≤ y, y ≤ z ⊢ x ≤ z,
x ≤ y, y ≤ x ⊢ x = y.
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Common Roof

Definition.
A functor G : Str(S ) → Str(S ) is a lifting of F : Set→ Set if the square
below commutes:

Str(S ) Str(S )

Set Set

U

G

U

F

Definition.

An (infinitary) algebraic signature is a set Σ of operation symbols σ with
prescribed arity ar(σ), a cardinal number. A lifted algebraic signature Σ̂ is
given by a signature Σ together with a lifting Lσ : Str(S ) → Str(S ) of the
functor (−)n : Set→ Set for every n-ary operation symbol σ ∈ Σ. Given
A ∈ Str(S ) we write Lσ(RA) for the interpretation of the relation symbol
R ∈ S in the structure Lσ(A):

Lσ(A) = (An, (Lσ(RA))R∈S ).
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Common Roof

Notation.

From now on, we fix a lifted algebraic signature Σ̂ with associated
lifted functors Lσ (σ ∈ Σ). We assume that each Lσ preserves
embeddings. Moreover, we choose a regular cardinal κ such that
every operation symbol in Σ has arity < κ; hence Σ is a κ-ary
signature.

J. Jurka, S. Milius, H. Urbat · Algebraic Reasoning over Relational Structures · 21st June 2024 14 / 41



Common Roof

Definition.

A Σ̂-algebra is given by an S -structure A equipped with n-ary
operations

σA : (An, (Lσ(RA))R∈S ) → (A, (RA)R∈S ) in Str(S )

for every n-ary operation symbol σ ∈ Σ.

Definition.

A morphism h : A→ B of Σ̂-algebras is a map from A to B that is both
a Str(S )-morphism and a Σ-algebra morphism; the latter means that
h(σA(a1, . . . , an)) = σB(h(a1), . . . , h(an)) for each n-ary operation
symbol σ ∈ Σ and a1, . . . , an.
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Common Roof

Definition.

We let Alg(Σ̂) denote the category of Σ̂-algebras and their
morphisms, and Alg(C , Σ̂) the full subcategory of Σ̂-algebras over C ,
that is, Σ̂-algebras whose underlying S -structure lies in the full
subcategory C ↪→ Str(S ) given by Ax.
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Common Roof

Examples.

For every relational signature S , there are two simple choices of a
lifting Lσ : Str(S ) → Str(S ) for an n-ary operation symbol σ ∈ Σ:

1. The discrete lifting Ldiscσ maps A ∈ Str(S ) to An equipped with
empty relations. Then the operation σA : An → A of a Σ̂-algebra
A is just an arbitrary map that is not subject to any conditions.

2. The product lifting Lprodσ maps A ∈ Str(S ) to the product
structure An in Str(S ). Then the operation σA : An → A is
relation-preserving w.r.t. the product structure:

RAn((ai,1)i<n, . . . , (ai,m)i<n) ⇐⇒ ∀i < n : RA(ai,1, . . . , ai,m).
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Common Roof

Examples.
For the signature S = {=ε: ε ∈ [0, 1] } and C = GMet we obtain the
quantitative Σ̂-algebras by Mio et al. [MSV22]. In op. cit. and in
[MSV23] the authors consider two non-trivial liftings which are
motivated by applications in quantitative term rewriting and machine
learning:

1. The Lipschitz lifting for a fixed parameter α ∈ [1,∞) for which
the operation σA : An → A of a quantitative Σ̂-algebra A is an
α-Lipschitz map w.r.t. the product metric d on An.

2. The Łukaszyk–Karmowski lifting such that given a quantitative
Σ̂-algebra A the binary operation σA : A2 → A is nonexpansive
w.r.t. the Łukaszyk–Karmowski distance.
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Common Roof

Examples.
For the signature S = {≤} and C = Pos we obtain various notions
of ordered algebras, i.e. algebras carried by a poset.
1. The discrete lifting and the product lifting correspond to ordered
algebras with arbitrary or monotone operations, respectively.
The latter are standard ordered algebras due to Bloom.

2. These two liftings admit a common generalization: for a fixed
subset S ⊆ {1, . . . , n} and σ ∈ Σ, let LSσ be the lifting that sends
A ∈ Str(S ) to An with the relation (ai)i<n ≤ (a′i)i<n iff ai ≤ a′i for
every i ∈ S. An operation σA : An → A is then monotone in
precisely the coordinates from S.
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Common Roof

Definition.
A morphism e : A→ B in Str(S ) is c-reflexive if for every
substructure B0 ⊆ B of cardinality |B0| < c, there exists a
substructure A0 ⊆ A such that e restricts to an isomorphism in
Str(S ) (i.e. a bijective embedding) e0 : A0

∼=−−→ B0.
If additionally e is surjective, then e is a c-reflexive quotient.
By extension, a quotient in Alg(Σ̂) is c-reflexive if its underlying
quotient in Str(S ) is c-reflexive.
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Common Roof

Definition.
A c-clustered equation over the set X of variables is an expression of
either of the types

Ri(xi,1, . . . , xi,ni) (i ∈ I) ⊢ R(t1, . . . , tn),
Ri(xi,1, . . . , xi,ni) (i ∈ I) ⊢ t1 = t2,

where (a) I is a set, (b) xi,k ∈ X for all i, k, (c) t1, . . . , tn are Σ-terms
over X , (d) Ri (i ∈ I) and R are relation symbols in S with respective
arities ni and n, and (e) the set X can be expressed as a disjoint union
X =

∐
j∈J Xj of subsets of cardinality |Xj| < c such that for every i ∈ I,

the variables xi,1, . . . , xi,ni all lie in the same set Xj.
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Common Roof

Ri(xi,1, . . . , xi,ni) (i ∈ I) ⊢ R(t1, . . . , tn), (4.3)
Ri(xi,1, . . . , xi,ni) (i ∈ I) ⊢ t1 = t2, (4.4)

Definition.
Let A be a Σ̂-algebra over C .

1. The algebra A satisfies the c-clustered equation (4.3) if for every map
h : X → A,

(Ri)A(h(xi,1), . . . , h(xi,ni )) for all i ∈ I implies RA(h♯(t1), . . . , h♯(tn)).

Here h♯ : TΣX → A denotes the unique Σ-algebra morphism extending
h.

2. Similarly, A satisfies the c-clustered equation (4.4) if for every map
h : X → A,

(Ri)A(h(xi,1), . . . , h(xi,ni)) for all i ∈ I implies h♯(t1) = h♯(t2).
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Common Roof

Examples.
1. For C = GMet the c-clustered equations are of the form

xi =εi yi (i ∈ I) ⊢ t1 =ε t2 or xi =εi yi (i ∈ I) ⊢ t1 = t2,

where (a) I is a set, (b) xi, yi ∈ X for all i ∈ I, (c) t1, t2 are Σ-terms
over X , (d) εi, ε ∈ [0, 1], and (e) the set X is a disjoint union
X =

∐
j∈J Xj of subsets of cardinality |Xj| < c such that for every

i ∈ I, the variables xi and yi lie in the same set Xj. For ordinary
metric spaces, these equations correspond to the c-clustered
equations introduced by Milius and Urbat [MU19].

2. For C = Pos the c-clustered equations are of the form

xi ≤ yi (i ∈ I) ⊢ t1 ≤ t2 or xi ≤ yi (i ∈ I) ⊢ t1 = t2,

subject to the conditions (a)–(c) and (e) as in the example above.
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Common Roof

Definition.

A class of Σ̂-algebras over C is a c-variety if it is axiomatizable by
c-clustered equations.

Variety Theorem.

A class of Σ̂-algebras over C is a c-variety iff it is closed under
c-reflexive quotients, subalgebras, and products.
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Common Roof

Example.

For C = Pos, the cardinal number c = 2, and Σ̂ obtained by taking for
every operation symbol the product lifting, we obtain Bloom’s
classical variety theorem [Bloom76] for ordered algebras.
For all other choices of c and Σ̂, we obtain to a family of new variety
theorems for c-varieties of ordered algebras.
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Common Roof

Example.
For C = metric spaces and again the product lifting for every
operation symbol, we obtain a refinement of the variety theorem by
Mardare et al. [MPP17]: a class of quantitative algebras is
axiomatizable by c-clustered equations iff it is closed under
c-reflexive quotients, subalgebras, and products.
For C = GMet and arbitrary liftings, we obtain a family of new variety
theorems for generalized quantitative algebras.
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Common Roof

How to prove the Variety Theorem?
Instantiate Milius and Urbat’s Abstract Variety Theorem!
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Common Roof

Fix a category A with a proper factorization system (E ,M), a full
subcategory A0 ↪→ A , and a classX of objects of A .
Informally, we think of A as a category of algebraic structures, of A0
as the subcategory of those algebras over which varieties are formed,
and ofX as the class of term algebras over which equations are
formed.

Definition.
The classX determines a class of quotients in A defined by

EX = { e ∈ E : every X ∈ X is projective w.r.t. e }.

An EX -quotient is a quotient represented by a morphism in EX .
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Common Roof

Definition.
An abstract equation is an E-morphism e : X ↠ E where X ∈ X and
E ∈ A0. An object A ∈ A0 satisfies the abstract equation e if every
morphism h : X → A factorizes through e. A class V of objects of A0 is
an abstract variety if it is axiomatizable by abstract equations

The following theorem, which is a special case of a result by Milius
and Urbat [MU19], characterizes abstract varieties by their closure
properties:

Abstract Variety Theorem.

Suppose that the category A is E-co-well-powered and has products,
that A0 ↪→ A is closed under products and subobjects, and that
every object of A0 is an EX -quotient of some object ofX . Then for
every class V of objects of A0: V is an abstract variety iff V is closed
under EX -quotients, subobjects, and products.
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Common Roof

Example.
The classical Birkhoff Variety Theorem corresponds to the instantiation:

A = A0 = Σ-algebras for a finitary algebraic signature Σ;

(E ,M) = (surjective, injective);

X = all free (term) algebras TΣX , where X is a set of variables. Then
EX = E .

Our Instantiation.
Let c > 1 be a cardinal number. A structure X ∈ Str(S ) is called
c-clustered if it can be expressed as a coproduct X =

∐
j∈J Xj where |Xj| < c

for each j ∈ J. We instantiate the Abstract Variety Theorem to the
following data:

A = Alg(Σ̂) and A0 = Alg(C , Σ̂) for a lifted signature Σ̂;

(E ,M) = (surjections, embeddings);

X = all free algebras TΣ̂X where X ∈ Str(S ) is a c-clustered
structure. Then EX = {c-reflexive quotients}.
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Exactness Property

Exactness Property

In the classical case, it is well-known that for every Σ-algebra A,
surjective Σ-algebra morphisms e : A↠ B are in bijective
correspondence with congruence relations on A, which are
equivalence relations respected by the operations σA : An → A.
We establish a corresponding exactness property for Σ̂-algebras,
which turns out to be more involved and slightly subtle.
For notational simplicity we assume that the signature Σ is finitary.
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Exactness Property

Definition.

1. Given a Σ̂-algebra A over C with underlying S -structure
(A, (RA)R∈S ), a refining structure on A is an S -structure (R′A)R∈S
with carrier A satisfying the following properties:
1.1 (A, (R′A)R∈S ) lies in C ′;
1.2 RA ⊆ R′A for each R ∈ S ;
1.3 for each σ ∈ Σ, the operation σA is relation-preserving w.r.t. the

relations R′A and Lσ(R
′
A):

Lσ(R′A)((ai,1)i<n, . . . , (ai,m)i<n) =⇒ R′A(σA((ai,1)i<n), . . . , σA((ai,m)i<n))

for every R ∈ S , where n is a the arity of σ, m is the arity of R,
and ai,j ∈ A.

2. A congruence on A is an equivalence relation ≡ on A such that,
for all σ ∈ Σ of arity n and all ai, a′i ∈ A, i = 1, . . . , n, we have

ai ≡ a′i (i < n) =⇒ σA(a1, . . . , an) ≡ σA(a′1, . . . , a
′
n).
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Exactness Property

Definition.
A compatible pair ((R′A)R∈S ,≡) on A is given by a refining structure
(R′A)R∈S and a congruence ≡ on A satisfying the following
conditions:
1. For each n-ary R ∈ S and ai, a′i ∈ A, i = 1, . . . , n, we have

ai ≡ a′i (i < n) =⇒
(
R′A(a1, . . . , an) ⇐⇒ R′A(a

′
1, . . . , a

′
n)
)
.

2. For all axioms of type (4.2) in Ax and h : X → A,

(R′i)A(h(xi,1), . . . , h(xi,ni)) for all i ∈ I implies h(x1) ≡ h(x2).
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Exactness Property

We let E↔ denote the class of all quotients in Str(S ) that both
preserve and reflect relations.

Theorem.
Suppose that Σ̂ is a lifted signature satisfying Lσ(E↔) ⊆ E↔ for all
σ ∈ Σ. Then for A ∈ Alg(Σ̂) the complete lattices of C -quotients of A
and compatible pairs on A are isomorphic.
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Conclusions and Future Work

Conclusions and Future Work

We have investigated clustered algebraic equations over relational
structures, which generalizes and unifies a number of related notions
that naturally appear in algebraic reasoning over metric spaces or
posets.
Our approach highlights the clear separation between algebraic and
relational aspects.
Future Work: A natural next step will be to derive a relevant complete
deduction system. A further direction to investigate is how to
characterize our equational theories by properties of the
corresponding free-algebra monads. Another potential direction is to
investigate clustered equations over relational structures via Lawvere
theories with arities.
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Thank you for your attention!



The next slides contain some additional details.
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Example (continued).
We can regard generalized metric spaces as relational structures as
follows. Consider the relational signature S = {=ε: ε ∈ [0, 1] } where
ar(=ε) = 2 for each ε ∈ [0, 1]. Let Ax be the corresponding subset of the
following Horn clauses, where ε, ε′ ∈ [0, 1]:

⊢ x =0 x (Refl′)

x =0 y ⊢ x = y (Pos′)

x =ε y ⊢ y =ε x (Sym′)

x =ε y, y =ε′ z ⊢ x =ε+ε′ z (ε+ ε′ ≤ 1) (Tri′)

x =ε y, y =ε′ z ⊢ x =max{ε,ε′} z (Max′)

x =ε y ⊢ x =ε′ y (ε < ε′) (Up)

x =ε′ y (ε′ > ε) ⊢ x =ε y (Arch)

An S -structure (A, (=ε)ε∈[0,1]) satisfying Ax then gives rise to a
generalized metric space (A, d) with the generalized metric defined by
d(a, a′) := inf{ε : a =ε a′}. In the opposite direction, a generalized metric
space (A, d) defines an S -structure (A, (=ε)ε∈[0,1]) where a =ε a′ holds iff
d(a, a′) ≤ ε. Then C = GMet.
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Examples.
For the signature S = {=ε: ε ∈ [0, 1] } and C = GMet we obtain the
quantitative Σ̂-algebras by Mio et al. [MSV22]. In op. cit. and in [MSV23] the
authors consider two non-trivial liftings which are motivated by
applications in quantitative term rewriting and machine learning:

1. The Lipschitz lifting LLip,ασ for a fixed parameter α ∈ [1,∞) maps
A ∈ Str(S ) to An equipped with the relations (ai)i<n =ε (a′i)i<n iff
ai =ε/α a′i for all i < n. Then the operation σA : An → A of a
quantitative Σ̂-algebra A is an α-Lipschitz map w.r.t. the product metric
d on An, which is defined by d((ai)i<n, (a′i)i<n) := supi<n dA(ai, a′i).

2. The Łukaszyk–Karmowski lifting LLK,pσ , for a fixed parameter p ∈ (0, 1)
and a binary operation symbol σ ∈ Σ, sends A ∈ Str(S ) to A2

equipped with the relations defined by (a1, a2) =ε (a′1, a
′
2) iff there

exist εij ∈ [0, 1] (i, j = 1, 2) such that a1 =ε11 a
′
1, a1 =ε12 a

′
2, a2 =ε21 a

′
1,

a2 =ε22 a
′
2 and ε = p

2ε11 + p(1− p)ε12 + (1− p)pε21 + (1− p)2ε22.
Then given a quantitative Σ̂-algebra A the operation σA : A2 → A is
nonexpansive w.r.t. the Łukaszyk–Karmowski distance.
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Examples.
For the signature S = {≤} and C = Pos we obtain various notions of
ordered algebras, i.e. algebras carried by a poset.

1. The discrete lifting and the product lifting correspond to ordered
algebras with arbitrary or monotone operations, respectively. The
latter are standard ordered algebras due to Bloom.

2. These two liftings admit a common generalization: for a fixed
subset S ⊆ {1, . . . , n} and σ ∈ Σ, let LSσ be the lifting that sends
A ∈ Str(S ) to An with the relation (ai)i<n ≤ (a′i )i<n iff ai ≤ a′i for every
i ∈ S. An operation σA : An → A is then monotone in precisely the
coordinates from S.

3. The lexicographic lifting Llexσ sends A ∈ Str(S ) to An with
(ai)i<n ≤ (a′i )i<n if either (ai)i<n = (a′i )i<n, or ak ≤ a′k for
k = min{i < n : ai ̸= a′i}. An operation σA : An → A is then monotone
w.r.t. the lexicographic ordering on An.

Furthermore, combinations of the above items are easily conceivable,
e.g. we may specify ordered algebras with a monotone operation
σA : A5 → A where the order on A5 is lexicographic in the first two
coordinates, coordinatewise in the last two, and discrete in the third.
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