Completeness of graphical languages for finite dimensional Hilbert spaces

Razin A. Shaikh<sup>1,2</sup>, Boldizsár Poór<sup>1</sup>, Quanlong Wang<sup>1</sup>

<sup>1</sup>Quantinuum, 17 Beaumont Street, Oxford, OX1 2NA, United Kingdom

<sup>2</sup>University of Oxford, United Kingdom

June 20, 2024

**ZX-calculus** 

## **Spiders**





## Computational basis states

## Superposition

#### Hadamard box



#### Hadamard box



#### Hadamard matrix







# Z-spider



## Z-spider





## X-spider



## Composition











#### Phases





#### Phases



### Quantum gates



#### Theorem (Universality)

Any linear map between qubits can be expressed in terms of ZX diagrams.

# Rewrite rules

Сору





## Fusion



Color





## Only Connectivity Matters



## **Only Connectivity Matters**



Axioms



#### Theorem (Completeness)

Any equation that holds for linear maps between qubits can be derived in ZX-calculus.



### Quantum Teleportation



## Quantum Teleportation



# Extensions

#### Applications: ZX-calculus Quantum Circuit Optimisation



Measurement-Based Quantum Computing



#### W node





28/30





#### Linear Optical Quantum Computing



## ZXW-calculus

Hamiltonians



Differentiation and integration



Completeness of qufinite ZXW calculus, a graphical language for finite-dimensional quantum theory

## Finite-dimensional Hilbert spaces

#### Definition

**FHilb** is the category of finite-dimensional Hilbert spaces.

Definition

**FHilb**<sub>d</sub> is the subcategory of **FHilb**, where Hilbert spaces have dimensions of  $d^n$ .
### Qubits:

$$\left|\psi\right\rangle = \alpha \left|0\right\rangle + \beta \left|1\right\rangle$$

#### Qudits:

$$\left|\psi\right\rangle = a_{0}\left|0\right\rangle + a_{1}\left|1\right\rangle + a_{2}\left|2\right\rangle + \cdots + a_{d-1}\left|d-1\right\rangle$$



















# The qufinite ZXW-calculus

### Standard bases

For  $0 \leq j < d$ ,



## Z spider

 $\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ \hline \end{array} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ 

### X spider



### Notation: The multiplier



### Generator: W node



### Generator: W node





### Understanding the Z box

Z spider:

$$\stackrel{\left[\!\left[ \begin{array}{c} \cdot \end{array}\right]}{\overset{}{\underset{}}} \quad \stackrel{\left[ \begin{array}{c} 1 & 0 \\ 0 & e^{i\alpha} \end{array} \right], \qquad \text{where } \alpha \in \mathbb{R}.$$

Z box:

$$\stackrel{[]}{\stackrel{a}{\longrightarrow}} \stackrel{[]}{\mapsto} \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}, \quad \text{where } a \in \mathbb{C}.$$

### Understanding the qudit Z box Qubit Z box: for $a \in \mathbb{C}$ ,



Qudit Z box: for 
$$ec{a}=(a_1,a_2,\cdots,a_{d-1})\in\mathbb{C}^{d-1}$$
,

### Generator: Z box



where 
$$\vec{a} = (a_1, \cdots, a_{d-1}) \in \mathbb{C}^{d-1}$$
  
and  $a_0 \coloneqq 1_{12/5}$ 

# Mixed-dimensional generatos

### Mixed dimensions



### Mixed dimensions



### Mixed dimensions



### **Dimension splitter**



### Interacting diemensions



### Mixed-dimensional Z box



where 
$$\vec{a}=(a_1,\cdots,a_{\min{\{d_i\}_i-1}})\in\mathbb{C}^{d-1}$$
 and  $a_0:=1$ 

### Mixed-dimensional copy



### Rule: Mixed-dimensional copy



### Rule: Mixed-dimensional fusion



where 
$$M = \min\{\min_{t=1}^{j} m_t, \min_{t=1}^{\ell} n_t, \min_{t=1}^{s} r_t\}, \ \overrightarrow{ab'} = (a_1b_1, \dots, a_{M-1}b_{M-1}).$$

# Rule: Trialgebra



## **Rule: Dimension Splitter**



## A Normal Form





 $\llbracket \cdot \rrbracket$ 

where  $m = \prod m_i_{23/53}$ 

### Proposition

#### The interpretation functor $\llbracket \cdot \rrbracket$ is full.

Completeness proof

### Map-state duality


# Completeness using a normal form

If  $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ , then:



#### Structure of states



where  $g_1, \dots, g_k$  are generators.

# State $\Rightarrow$ normal form I.



# State $\Rightarrow$ normal form II.



# State $\Rightarrow$ normal form III.



## State $\implies$ normal form IV.



# State $\Rightarrow$ normal form V.



# State $\Rightarrow$ normal form VI.



Summary: state  $\implies$  normal form

- Generators
- Tensor product of two normal forms
- Partial-traced normal form

# Lemma: Z box

d



# Lemma: W node



# Lemma: Hadamard box



# Lemma: Dimension splitter



where  $k = s_k n + t_k, 0 \le k \le mn - 1$ .

### Lemma: Tensor product



where  $M = d^m - 1$ ,  $N = d^n - 1$ .

40/53

### Lemma: Partial trace



where  $m_i=m_j$  and  $\Sigma_k$  corresponds to the elements of the partial trace over s and t indices.

41/53

#### Theorem (Completeness)

# The qufinite ZXW calculus is complete for finite-dimensional Hilbert spaces.

# The category **ZXW** is monoidally equivalent to the category **FHilb**.

The category **ZXW** is monoidally equivalent to the category **FHilb**.

Two categories are monoidally equivalent if

- there is a monoidal functor between them and
- the functor is full, faithful, and
- essentially surjective on objects

(Heunen and Vicary, 2019)

The category **ZXW** is monoidally equivalent to the category **FHilb**.

Proof.

• The interpretation functor  $\llbracket \cdot \rrbracket$  is a monoidal functor.

The category **ZXW** is monoidally equivalent to the category **FHilb**.

Proof.

- The interpretation functor  $\llbracket \cdot \rrbracket$  is a monoidal functor.
- It is full and faithful by Proposition 1 and Theorem 3, respectively.

The category **ZXW** is monoidally equivalent to the category **FHilb**.

Proof.

- The interpretation functor  $\llbracket \cdot \rrbracket$  is a monoidal functor.
- It is full and faithful by Proposition 1 and Theorem 3, respectively.
- For any object H ∈ FHilb, we have an object (dim(H),) ∈ ZXW such that H ≅ C<sup>dim(H)</sup> = [(dim(H),)]; hence, [.] is essentially surjective on objects.

The category **ZXW** is monoidally equivalent to the category **FHilb**.

Proof.

- The interpretation functor  $\llbracket \cdot \rrbracket$  is a monoidal functor.
- It is full and faithful by Proposition 1 and Theorem 3, respectively.
- For any object H ∈ FHilb, we have an object (dim(H),) ∈ ZXW such that H ≅ C<sup>dim(H)</sup> = [[(dim(H),)]]; hence, [[·]] is essentially surjective on objects.

# Applications

# Symmetrizer of spin- $\frac{n}{2}$



where 
$$ec{a}=\left(rac{1}{\binom{n}{1}},\cdots,rac{1}{\binom{n}{k}},\cdots,rac{1}{\binom{n}{n}}
ight)$$

#### Penrose Spin Calculus: ZX for SU(2)

Quanlong Wang<sup>1</sup> Richard D. P. East Razin A. Shaikh<sup>1,2</sup> Lia Yeh<sup>1,2</sup> Boldizsár Poór<sup>1</sup>

 $^1 \rm Quantinuum,$  17 Beaumont Street, Oxford, OX1 2NA, United Kingdom $^2 \rm University$  of Oxford, United Kingdom

We introduce the Penrose spin calculus as an elevation of Penrose's diagrams and associated Binor calculus to the level of a formal diagrammatic language. By leveraging the mixed-dimensional ZX calculus, a complete language for finite dimensional Hilbert spaces, we formulate a diagrammatic language for SU(2) representation theory in quantum informational terms. Using this language we firstly articulate the classic angular moment relations

# Jaynes-Cummings



# Quantum programming language: QFT



#### ZX-calculus is Complete for Finite-Dimensional Hilbert Spaces

Boldizsár Poór<sup>1</sup> Razin A. Shaikh<sup>1,2</sup> Quanlong Wang<sup>1</sup>

<sup>1</sup>Quantinuum, 17 Beaumont Street, Oxford, OX1 2NA, United Kingdom <sup>2</sup>University of Oxford, United Kingdom

The ZX-calculus is a graphical language for reasoning about quantum computing and quantum information theory. As a complete graphical language, it incorporates a set of axioms rich enough to derive any equation of the underlying formalism. While completeness of the ZX-calculus has been established for qubits and the Clifford fragment of prime-dimensional qudits, universal completeness beyond two-level systems has remained unproven until now. In this paper, we present a proof establishing the completeness of finite-dimensional ZX-calculus, incorporating only the mixed-dimensional Z-spider and the qudit X-spider as generators. Our approach builds on the completeness of another graphical language, the finite-

Thank you!

# Overview

1 Introduction Qudits Completeness

- 2 The qufinite ZXW-calculus Qudit genarators Mixed-dimensional generatos Example equalities
- 3 Completeness proof Proof idea Lemmas



# **References** I

 Backens, Miriam (Sept. 2014). 'The ZX-calculus Is Complete for Stabilizer Quantum Mechanics'. In: New Journal of Physics 16.9, p. 093021. ISSN: 1367-2630. DOI: 10.1088/1367-2630/16/9/093021.
 Booth, Robert I. and Titouan Carette (6th July 2022). Complete ZX-calculi for the Stabiliser Fragment in Odd Prime

Dimensions. arXiv: 2204.12531.

- De Visme, Marc and Renaud Vilmart (29th Jan. 2024). *Minimality* in Finite-Dimensional ZW-Calculi. arXiv: 2401.16225.
- Hadzihasanovic, Amar (6th July 2015). 'A Diagrammatic Axiomatisation for Qubit Entanglement'. In: Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '15. USA: IEEE Computer Society, pp. 573–584. ISBN: 978-1-4799-8875-4. DOI: 10.1109/LICS.2015.59. arXiv: 1501.07082.

# **References II**

Heunen, Chris and Jamie Vicary (19th Nov. 2019). Categories for Quantum Theory: An Introduction. Oxford University Press. ISBN: 978-0-19-873962-3. DOI:

10.1093/oso/9780198739623.001.0001.

Jeandel, Emmanuel, Simon Perdrix and Renaud Vilmart (9th July 2018a). 'A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics'. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '18. New York, NY, USA: Association for Computing Machinery, pp. 559–568. ISBN: 978-1-4503-5583-4. DOI: 10.1145/3209108.3209131. arXiv: 1705.11151.

# **References III**

 Jeandel, Emmanuel, Simon Perdrix and Renaud Vilmart (9th July 2018b). 'Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics'. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '18. New York, NY, USA: Association for Computing Machinery, pp. 569–578. ISBN: 978-1-4503-5583-4. DOI: 10.1145/3209108.3209139. arXiv: 1801.10142.
 Ng, Kang Feng and Quanlong Wang (29th June 2017). A Universal Completion of the ZX-calculus. arXiv: 1706.09877.

# **References IV**

- Poór, Boldizsár et al. (June 2023). 'Completeness for Arbitrary Finite Dimensions of ZXW-calculus, a Unifying Calculus'. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Logic in Computer Science (LICS). Boston, MA, USA, pp. 1–14. DOI: 10.1109/LICS56636.2023.10175672. arXiv: 2302.12135.
- Shaikh, Razin A., Quanlong Wang and Richie Yeung (8th Dec. 2022). How to Sum and Exponentiate Hamiltonians in ZXW Calculus. arXiv: 2212.04462.

# References V

- Wang, Quanlong (2018). 'Qutrit ZX-calculus Is Complete for Stabilizer Quantum Mechanics'. In: Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, the Netherlands. Ed. by Bob Coecke and Aleks Kissinger. Vol. 266. Electronic Proceedings in Theoretical Computer Science. Open Publishing Association, pp. 58–70. DOI: 10.4204/EPTCS.266.3.
- Wang, Quanlong, Richie Yeung and Mark Koch (24th Nov. 2022). Differentiating and Integrating ZX Diagrams with Applications to Quantum Machine Learning. arXiv: 2201.13250.