## A Profunctorial Semantics for Quantum Supermaps

James Hefford and Matt Wilson

ACT 2024



### What is a Supermap?



### What is a Supermap?



### What is a Supermap?



### **Quantum Supermaps**



2008: Chiribella, D'Ariano, Perinotti



2009: Chiribella, D'Ariano, Perinotti



2020: Araújo, Feix, Navascués, Brukner



2021: Yokojima, Quintino, Soeda, Murao

## Case 1: holes in circuits / concrete networks / combs



2008: Chiribella, D'Ariano, Perinotti



### Case 2: abstract (black-box) definite causal order



2009: Chiribella, D'Ariano, Perinotti



### Case 3: abstract (black-box) indefinite causal order







### Case 3: abstract (black-box) indefinite causal order

There exist maps with no decomposition as a comb:

- Quantum Switch (2013: Chiribella, D'Ariano, Perinotti, Valiron)
- Lugano process (2014: Baumeler, Feix, Wolf)
- OCB process (2012: Oreshkov, Costa, Brukner)
- Grenoble process (2021: Wechs, Dourdent, Abbott, Branciard)



### Case 3: abstract (black-box) indefinite causal order



2018: Ebler, Salek, Chiribella



2020: Zych, Costa, Pikovski, Brukner

#### **Three Cases**



### **Current Approaches**

- 1. Caus-construction
- 2. Coend optics
- ${\it 3. \ Locally-applicable \ transformations}$

#### **Caus-construction**



2019: Kissinger, Uijlen; 2022 & 2024: Simmons, Kissinger

#### **Caus-construction**



 $\mathsf{BUT} \ldotp \mathsf{Hilb}, \ \mathsf{Unitaries}, \ \mathsf{Isometries}, \ \mathsf{many} \ \mathsf{GPTs} \ \mathsf{are} \ \mathsf{not} \ \mathsf{compact} \ \mathsf{closed!}$ 

### **Coend Optics**

### Category $\mathsf{Optic}(\mathcal{C})$

- ullet objects are pairs  $oldsymbol{a}:=(a,a')$  of objects of  $\mathcal C$
- hom-sets are

$$\mathsf{Optic}(\mathcal{C})(\boldsymbol{a},\boldsymbol{b}) := \int^x \mathcal{C}(b,x\otimes a) \times \mathcal{C}(x\otimes a',b').$$



2008: Pastro, Street; 2018: Riley; 2020: Román

2020: Clarke, Elkins, Gibbons, Loregian, Milewski, Pillmore, Román

### **Coend Optics**

#### Can model case 1:





Not clear how to handle cases 2 and 3



2022: Wilson, Chiribella, Kissinger; 2022: Wilson, Chiribella

A *locally-applicable transformation*  $\eta: a \rightarrow b$  is a family of functions:



#### such that,



2022: Wilson, Chiribella, Kissinger;

2022: Wilson, Chiribella

A *multi-partite* locally-applicable transformation  $\eta: a_1, \ldots, a_n \to b$  is a family of functions:



#### such that,



2022: Wilson, Chiribella, Kissinger;

2022: Wilson, Chiribella

#### Pros:

- Can model case 3:
  - $\eta: a_1, \dots, a_n o b$  are the indefinitely-causally ordered quantum supermaps on quantum channels
- Very few underlying assumptions: no compact closure!

#### Cons:

- Algebraically intractable
- What is going on categorically?
- Cases 1 and 2?

# Single-Party Supermaps



$$\phi \in \mathcal{C}(a \otimes x, a' \otimes x')$$

$$\downarrow^{\eta_{x,x'}}$$

$$\eta_{x,x'}(\phi) \in \mathcal{C}(b \otimes x, b' \otimes x')$$



$$\phi \in \mathcal{C}(a \otimes x, a' \otimes x')$$

$$\downarrow^{\eta_{x,x'}}$$

$$\eta_{x,x'}(\phi) \in \mathcal{C}(b \otimes x, b' \otimes x')$$

•  $\mathcal{C}(a \otimes -, a' \otimes =) : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathsf{Set}$  is an endoprofunctor  $\mathcal{C} \to \mathcal{C}$ 



$$\phi \in \mathcal{C}(a \otimes x, a' \otimes x')$$

$$\downarrow^{\eta_{x,x'}}$$

$$\eta_{x,x'}(\phi) \in \mathcal{C}(b \otimes x, b' \otimes x')$$

- $\mathcal{C}(a \otimes -, a' \otimes =) : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathsf{Set}$  is an endoprofunctor  $\mathcal{C} \to \mathcal{C}$
- $\bullet \ \eta_{x,x'} \text{ are components of } \eta: \mathcal{C}(a\otimes -, a'\otimes =) \Rightarrow \mathcal{C}(b\otimes -, b'\otimes =)$



### Locally-applicable Transformations: Strength



### **Locally-applicable Transformations: Strength**



### Locally-applicable Transformations: Strength





### Locally-applicable Transformations: Categorically

#### **Definition**

A single-party locally-applicable transformation is a strong natural transformation

$$\eta: \mathcal{C}(a\otimes -, a'\otimes =) \Rightarrow \mathcal{C}(b\otimes -, b'\otimes =).$$

**Multi-Party Supermaps** 

### **Strong Profunctors**

 $\mathsf{StProf}(\mathcal{C})$  is the category with:

- ullet Objects: **strong** endoprofunctors  $P:\mathcal{C}\longrightarrow\mathcal{C}$
- Morphisms: strong natural transformations  $\eta: P \Rightarrow Q$ .

### **Strong Profunctors**

$$Q \otimes P = \bigcap_{P}^{c} Q(-,c) \times P(c,-)$$

$$Q \otimes_{\mathcal{C}} P = \boxed{Q} \boxed{P} / \sim = \left( \int^{abcd} \mathcal{C}(-, a \otimes b) \times Q(a, c) \times P(b, d) \times \mathcal{C}(c \otimes d, -) \right) / \sim$$

2008: Pastro, Street;

2016: Garner, López Franco;

2023: Earnshaw, H, Román

### **Strong Profunctors**

# Theorem (Pastro & Street) $StProf(C) \cong [Optic(C), Set]$

$$Q \otimes_{\mathcal{C}} P = Q \qquad P / \sim = \int^{ab} Q(a) \times P(b) \times \mathsf{Optic}(\mathcal{C})(a \otimes b, -)$$



### **Generalised Spaces of Maps**

$$\mathcal{C}(-\otimes b, = \otimes b') \otimes \mathcal{C}(a \otimes -, a' \otimes =)$$



### **Generalised Spaces of Maps**

$$\mathcal{C}(a \otimes -, a' \otimes =) \otimes_{\mathcal{C}} \mathcal{C}(- \otimes b, = \otimes b')$$





### **Indefinitely Causally Ordered Supermaps**

#### **Theorem**

The multi-partite locally-applicable transformations  $\eta:a_1,\ldots,a_n o b$  are the morphisms

$$\eta: \bigotimes_{i=1}^n \mathcal{C}(a_i \otimes -, a_i' \otimes =) \to \mathcal{C}(b \otimes -, b' \otimes =)$$



# **Indefinitely Causally Ordered Supermaps**

#### Theorem

The quantum supermaps on the non-signalling channels are the morphisms

$$S: \bigotimes_{\mathsf{CPTP}}^{i} \mathsf{CPTP}(a_i \otimes -, a_i' \otimes =) \to \mathsf{CPTP}(b \otimes -, b' \otimes =).$$



## **Definitely Causally Ordered Supermaps**

#### **Definition**

The definitely causally ordered supermaps are the morphisms

$$\bigoplus_{i=1}^{n} \mathcal{C}(a_i \otimes -, a_i' \otimes =) \to \mathcal{C}(c \otimes -, c' \otimes =)$$



# **Definitely Causally Ordered Supermaps**

#### Theorem

The definitely causally ordered quantum supermaps are the morphisms

$$\bigotimes_{i=1}^{n} \mathsf{CPTP}(a_i \otimes -, a_i' \otimes =) \to \mathsf{CPTP}(c \otimes -, c' \otimes =)$$



# Decomposition and Duality





$$y:\mathsf{Optic}(\mathcal{C})^{\mathrm{op}} o [\mathsf{Optic}(\mathcal{C}),\mathsf{Set}] \cong \mathsf{StProf}(\mathcal{C})$$

$$(a,a')\mapsto y_{a,a'}=\operatorname{Optic}(\mathcal{C})((a,a'),-)=$$

A symmetric monoidal category  ${\mathcal C}$  has a 1-arity supermap decomposition theorem if

$$\mathsf{StProf}(\mathcal{C})\big(\mathcal{C}(a\otimes -, a'\otimes =), \mathcal{C}(b\otimes -, b'\otimes =)\big) \cong \mathsf{StProf}(\mathcal{C})\big(y_{b,b'}, y_{a,a'}\big)$$

 ${\cal C}$  has an n-arity supermap decomposition theorem if

$$\mathsf{StProf}(\mathcal{C})\big(\otimes_i \mathcal{C}(a_i \otimes -, a_i' \otimes =), \mathcal{C}(b \otimes -, b' \otimes =)\big) \cong \mathsf{StProf}(\mathcal{C})(y_{b,b'}, \otimes_i y_{a_i,a_i'})$$

#### Theorem

The category CPTP has an n-arity supermap decomposition theorem for every n.

 $(\mathcal{C}, \otimes, i)$  closed monoidal category with internal-hom [-, -].

We have weak duals,  $a^* := [a, i]$ .

- $(-)^*: \mathcal{C}^{\mathrm{op}} \to \mathcal{C}$ ,
- $a^{**} \ncong a$  in general,
- models of tensorial logic,
- \*-autonomy and linear logic proceeds when  $a^{**} \cong a$ .

<sup>2010:</sup> Melliès, Tabareau

#### Lemma

The weak dual of  $y_a$  is  $C(a \otimes -, a' \otimes =)$ .



#### **Proposition**

A symmetric monoidal category  $\mathcal C$  has a 1-arity decomposition theorem if and only if

$$\mathcal{C}(a \otimes -, a' \otimes =)^* \cong y_{\mathbf{a}}, \text{ or equivalently, } y_{\mathbf{a}}^{**} \cong y_{\mathbf{a}}.$$

Furthermore,  $\mathcal C$  has an n-arity supermap decomposition theorem if and only if

$$(\bigotimes_i y_{\boldsymbol{a}_i}^*)^* \cong \bigotimes_i y_{\boldsymbol{a}_i}.$$

#### Proposition

A symmetric monoidal category  $\mathcal C$  has a 1-arity decomposition theorem if and only if

$$C(a \otimes -, a' \otimes =)^* \cong y_{\mathbf{a}}, \text{ or equivalently, } y_{\mathbf{a}}^{**} \cong y_{\mathbf{a}}.$$

Furthermore,  $\mathcal C$  has an n-arity supermap decomposition theorem if and only if

$$(\bigotimes_i y_{\boldsymbol{a}_i}^*)^* \cong \bigotimes_i y_{\boldsymbol{a}_i}.$$



We can define a functorial par,

$$- ?? - := (-^* \otimes -^*)^*$$

- ullet  ${\mathfrak P}$  is not generally a tensor of  ${\sf StProf}({\mathcal C}).$
- Strength,  $P^{**} \otimes Q \rightarrow (P \otimes Q)^{**}$ .
- Distributor of linear logic,

$$(P \ \ \mathcal{V} \ Q) \otimes R = (P^* \otimes Q^*)^* \otimes R \to (P^* \otimes (Q \otimes R)^*)^* = P \ \ \mathcal{V} \ (Q \otimes R).$$

#### **Summary**

- Formalised locally-applicable transformations
  - United with optics
  - ullet A framework for supermaps over any smc  ${\mathcal C}$
- Extended to include definite and indefinite causal orderings
- Identified decomposition theorems as representablility over optics

#### **Some Thank Yous**

With many thanks to:

- Mario Román
- Cole Comfort