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Intro



Motivation

• Modelling concurrent systems is a challenging task

• Lot of different characterization, both syntactical and semantic, also in the

probabilistic case

• Quantum systems are not just probabilistic! How to characterize their observable

behaviour?

• Start from quantum theory (effects) and build up to computer science (ELTS).

2



Roadmap

• We model systems which run in parallel, communicate and act according to their

qubits.

• Effect-weighted LTSs (ELTSs) encompass both probabilistic and quantum

systems.

• We study their behavioural equivalence

• Compositional reasoning thanks to graded operators on ELTS.
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Modelling Concurrent Systems
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Quantum States and effects

Quantum States are density matrices, representing distributions of statevectors.

DMH = {ρ ∈ Cd×d ∣ 0d ⊑ ρ, tr(ρ) = 1}

Examples:

∣0⟩⟨0∣ , ∣1⟩⟨1∣ , ∣+⟩⟨+∣ , I/2

Quantum Effects are functions from states to probabilities, EfH ≃ Conv(DMH, [0,1]).

They are represented as positive matrices smaller than the identity

EfH = {E ∈ Cd×d ∣ 0d ⊑ E ⊑ Id }
Examples:

∣0⟩⟨0∣ , I, 1
2
∣1⟩⟨1∣
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Effect Algebras

Definition: An effect algebra is a tuple ⟨E, 0,+, ⋅ ′⟩ with ⟨E, 0,+⟩ a partial commutative

monoid and ⋅ ′ a unary operator satisfying

• e′ is the unique element in E such that e + e′ = 1 with 1 = 0′;
• e + 1 is defined only when e = 0.

Some Examples:

• Probabilities ⟨[0,1],0,+,1 − ⋅ ⟩
• 2 = {0,1}

• σ-algebras with disjoint union

• Quantum Effects

Effect algebras define a partial order by a ⪯ b⇔∃c .a + c = b. Effect algebras and their

homomorphism form the symmetric monoidal category EA.
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Effect Distributions

Definition: Given an effect algebra ⟨E,0,+, ⋅ ′⟩ define the effect (sub-)distributions

functor DE ∶ Set→ Set

DEX =
⎧⎪⎪⎨⎪⎪⎩
∆ ∈ EX

RRRRRRRRRRRR
supp(∆) is finite, ∑

∈supp()
∆(x) ⪯ 1E

⎫⎪⎪⎬⎪⎪⎭
DEf (∆) = λy .∑

x∈f −1(y)
∆(x)

where supp(∆) is the set { x ∈ X ∣∆(x) ≠ 0}.

D[0,1]X ∋ {x ↦ 1},{x ↦ 0.5, y ↦ 0.5},{z ↦ 0.3} . . .
DEfHX ∋ {x ↦ IH},{x ↦ ∣+⟩⟨+∣ , y ↦ ∣−⟩⟨−∣},{z ↦ 0.3 ⋅ IH} . . .
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ELTSs



Colagebras

F -Coalgebras: couples (X , c) with X
cÐ→ FX .

Given X
cÐ→ FX and Y

dÐ→ FY , a coalegebra homomorphism is a function m ∶ X → Y

such that Fm ○ x = d ○m. F -coalgebras and their homomorphisms form the category

CoalgF .

Markov Chains

c ∶ X → D[0,1]X

Probabilistic LTSs

c ∶ X → P(D[0,1]X )L

Quantum Markov Chains

c ∶ X → DEfHX

Quantum LTSs

c ∶ X → P(DEfHX )L
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Example: Quantum Teleportaion

Alice ∶=MB(q1,q2 ⊳ x).c!x Bob ∶=
11

∑
i=00

c?i .Bobi

Alice

!x[01/x]!x[00/x] !x[10/x] !x[11/x]

τ

∣Φ+⟩⟨Φ+∣

∣Φ−⟩⟨Φ−∣ ∣Ψ+⟩⟨Ψ+∣

∣Ψ−⟩⟨Ψ−∣

!00 !01 !10 !11
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Example: Quantum Teleportaion

Alice ∶=MB(q1,q2 ⊳ x).c!x Bob ∶=
11

∑
i=00

c?i .Bobi

Bob

?00
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Bob00 Bob01 Bob10 Bob1

I I I I
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Behavioural Equivalences

R ⊆ X ×Y is an Aczel-Mendler

Bisimulation if there exists a span of

coalgebra homomorphisms. ∼AM is the

largest AM-bisimulation.

.
R

X DER Y

DEX DEY

r
π1 π2

c
DEπ1 DEπ2

d

R ⊆ X ×Y is a Larsen-Skou

Bisimulation if it the Set−pullback of

a cospan of coalgebra homomorpsisms.

∼LS is the largest LS bisimulation.

R

X Y

DEX Z DEY

DEZ

c
m1

d
m2

DEm1

z
DEm2
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Weak Pullback Preservation

Theorem: DE preserves weak pullbacks iff E is decomposable. In that case, CoalgF has

weak pullbacks.

E is decomposable if for all

a,b, c ,d ∈ E such that a + b = c + d is

defined, there exists e11, e12, e21, e22 ∈ E
such that:

a b

= =
e11 + e12 = c

+ +
e21 + e22 = d

Theorem: Let E be an effect algebra. For any DE-coalgebras c and d :

x ∼AM y
alwaysÔÔÔ⇒ x ∼LS y x ∼AM y

E decomposable⇐ÔÔÔÔÔÔÔ x ∼LS y
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The quantum case

An example inspired by [Ogawa 2014]:

s

s1 s2

α
∣0⟩⟨0∣ ∣1⟩⟨1∣c =

u

v

α

I
d =

t

t1 t2

α
∣+⟩⟨+∣ ∣−⟩⟨−∣e =

r

r1 r2

c d e

z1 z2

z
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Why we choose Larsen-Skou Bisimilarity:

• It is an equivalence relation

• It corresponds to the coalgebraic notion of behavioural equivalence (i.e. identity in

the final colagebra)

• It is correct and complete with respect to the observable probabilistic

behaviour

14



Probabilistic Behaviour

We can evaluate a QLTS with a quantum input state ρ ∈ DMH, by updating its weights.

s

s1 s2

α

∣0⟩⟨0∣ ∣1⟩⟨1∣c =

s

s1 s2

α

1/2 1/2c ↓∣+⟩⟨+∣ =

s

s1

α

1

c ↓∣0⟩⟨0∣ =
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Lifting Quantum Isomorphisms

• A quantum state ρ ∈ DMH gives an effect algebra homomorphism mρ ∶ EfH → [0, 1]

mρ(E) = tr(Eρ)

• A effect algebra homomorphism mρ gives a natural transformation

αρ ∶ DEfH ⇒ D[0,1]
αρ(D)(x) = mρ(D(x))

• A nat.transf. αρ ∶ DEfH ⇒ D[0,1] gives a nat.transf. P(αρ)L by whiskering

• A nat.transf. αρ ∶ F ⇒ G gives a functor of coalgebras ⋅ ↓ρ∶ CoalgF → CoalgG

x ↓ρ= x c ↓ρ= αρ ○ c f ↓ρ= f
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Correctness and Completeness

Theorem: Thanks to functoriality, for any two QLTS c and d :

x ∼LS y ⇒ ∀ρ ∈ DMH x ↓ρ ∼LS y ↓ρ

Moreover, if we restrict the weights to a finite sub-algebra Ef ′H ⊊ EfH, we have an

injective morphism from Ef ′H to [0,1].

Theorem: For any PDL
Ef ′H-coalgebras c and d :

x ∼LS y ⇔ ∀ρ ∈ DMH x ↓ρ ∼LS y ↓ρ

17



Parallel Composition



Parallel Composition

Compositionality is key for verification: we want to verify the correctness of the

Teleportation Protocol by studying Alice and Bob separately.

It is typical to consider Parallel Composition: Tel = Alice ∥ Bob.

What is the parallel composition of two ELTSs? If s
!0Ð→D ad t

?0Ð→ T, what about s ∥ t?
In the probabilistic case s ∥ t τÐ→D ⋅T, the joint probability distribution.

We need a natural transformation α ∶ DEX ×DEY ⇒ DE(X ×Y ). We search for a

commutative monad.

18
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Effect Monoids and Monads

If E is a commutative monoid object in EA

There is an morphism ∇ ∶ E⊗E→ E that is commutative associative and unital

∇(e, f ) = ∇(f , e) ∇(e,∇(f ,g)) = ∇(∇(e, f ),g)
∇(e,1E) = e ∇(e,0E) = 0E

Then DE is a monad on Set

There are a unit η ∶ Id ⇒ T and a multiplication µ ∶ DEDE ⇒ DE defined as

η(x) = 1E ● x µ(∑i
ei ●∆i)x = ∑i

∇(ei ,∆i(x))

19
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PCM of Quantum Systems

⟨Ef,C,⊗⟩ is not an effect monoid! It does not preserve dimension.

It is a effect monoid

graded on a PCM.

• Let Sys = {Si} be a fixed set of quantum systems.

• S = ⟨P(Sys),∅,⊎⟩ forms a PCM where ⊎ is the partial disjoint union.

• Each collection of systems C ∈ P(Sys) has an associated a Hilbert space obtained

by tensoring.

20
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Graded Monoid of Quantum Effects

Quantum effects carry a commutative S-graded effect monoid structure, i.e.:

• An effect algebra EC = EfHC
for any collection C ∈ P(Sys)

• An operator ∇C ,D ∶ EC ⊗ED → EC⊎D defined by ∇(E1,E2) = SortC ,D(E1 ⊗k E2),
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Graded Effect Monoids and Monads

If {En} is a commutative M-graded monoid object in EA

There are commutative associative and unital morphisms ∇n,m ∶ En⊗Em → En+m

Then DE is a commutative M-graded monad on Set

There are endofunctors Tn = DEn , a unit η ∶ Id ⇒ T0 and a multiplication

µ ∶ TnTm ⇒ Tn+m such that

TmTnTo TmTn+o Tm TmT0

Tm+nTo Tm+n+o T0Tm Tm

µm,nTo

Tmµn,o

µm,n+o ηTm

Tmη

µm,0

µm+n,o µ0,m

There is a nat. transf. α ∶ TnX ×TmY ⇒ Tn+m(X ×Y ) given by strength.
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Synchronization

Consider the graded monad QC = P(DEC
)L. Given two coalgebras X

cÐ→ QCX and

Y
dÐ→ QDY we define their CCS-style synchronization c ∥ d ∶ X ×Y → QC⊎D(X ×Y )

s
µÐ→D

s ∥ t µÐ→ α(D,{t ↦ ID})
t

µÐ→ T

s ∥ t µÐ→ α({s ↦ IC},T)
s

µÐ→D t
µÐ→ T

s ∥ t τÐ→ α(D,T)

We have defined a functor ⋅ ∥ ⋅ ∶ CoalgQC
×CoalgQD

→ CoalgQC⊎D . Since it preserves

bisimilarity, we also have that

s ∼LS s ′, t ∼LS t ′ Ô⇒ s ∥ t ∼LS s ′ ∥ t ′
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Conclusion and Future Works

• We use ELTSs to model probabilistic and quantum systems uniformly

• We define two bisimilarities, and prove that LS-bisimilarity is in general coarser

• In the quantum case, LS-bisimilarity is correct and complete with respect to the

probabilistic behavioural equivalence

• When the effects chosen as weights form a graded monoid, we have a graded

parallel composition of coalgebras

Future Work:

• Dealing with superoperator distributions instead of probability distributions

• Defining an adequate graded GSOS format and proving congruence for the standard

CCS operators
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Thank you

Question time
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