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Intro




e Modelling concurrent systems is a challenging task

e Lot of different characterization, both syntactical and semantic, also in the
probabilistic case

e Quantum systems are not just probabilistic! How to characterize their observable
behaviour?

e Start from quantum theory (effects) and build up to computer science (ELTS).



e We model systems which run in parallel, communicate and act according to their
qubits.
o Effect-weighted LTSs (ELTSs) encompass both probabilistic and quantum

systems.

We study their behavioural equivalence

Compositional reasoning thanks to graded operators on ELTS.



Modelling Concurrent Systems

?toss




Modelling Concurrent Systems

LTS:stateful computations with non-deterministic and/or probabilistic aspects

Coalgebras: X — P(X)L, X - D(X), X - P(D(X))t



Quantum States and effects

Quantum States are density matrices, representing distributions of statevectors.

DMH:{peCdXd|0dEp,tr(p) = ].}
Examples:
[0XO, [1X1[, [+X+[,1/2



Quantum States and effects

Quantum States are density matrices, representing distributions of statevectors.

DMHZ{pECdXd|OdEp,tI’(p) = ].}
Examples:
[0XO, [1X1[, [+X+[,1/2

Quantum Effects are functions from states to probabilities, £f; ~ Conv(DMy, [0,1]).

They are represented as positive matrices smaller than the identity

Efy={EcC™|0gcEc]y}

Examples:
1
0X0l, I, 5 [1K1]



Effect Algebras

Definition: An effect algebra is a tuple (E,0,+, -') with (E,0,+) a partial commutative
monoid and -’ a unary operator satisfying

e ¢’ is the unique element in E such that e+ e’ =1 with 1=0;

e e+ 1 is defined only when e = 0.
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Effect Algebras

Definition: An effect algebra is a tuple (E,0,+, -') with (E,0,+) a partial commutative
monoid and -’ a unary operator satisfying

e ¢’ is the unique element in E such that e+ e’ =1 with 1=0;

e e+ 1 is defined only when e = 0.
Some Examples:
e Probabilities ([0,1],0,+,1— ) e o-algebras with disjoint union

e 2={0,1} ¢ Quantum Effects

Effect algebras define a partial order by a < b < Jc.a+ c = b. Effect algebras and their
homomorphism form the symmetric monoidal category EA.



Effect Distributions

Definition: Given an effect algebra (E,0,+, -’) define the effect (sub-)distributions
functor D : Set — Set

DEX:{AEEX

supp(A) is finite, Y A(x) < 1E} Def(A) =Ay. > A(x)

esupp() xef~1(y)

where supp(A) is the set { x € X | A(x) #0}.



Effect Distributions

Definition: Given an effect algebra (E,0,+, -’) define the effect (sub-)distributions
functor D : Set — Set

DEX:{AEEX

supp(A) is finite, Y A(x) < 1E} Def(A) =Ay. > A(x)

esupp() xef~1(y)

where supp(A) is the set { x € X | A(x) #0}.

Dioy1X 3 {x~1},{x~05,y~05},{z~03}...
Der X 2 {x = Ip}, {x = [+X+[,y = [-X-[},{z > 0.3-In.} ...



ELTSs




Colagebras

F-Coalgebras: couples (X, c) with X 5 FX.
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Colagebras

F-Coalgebras: couples (X, c) with X 5 FX.

Given X > FX and Y g, FY, a coalegebra homomorphism is a function m: X - Y
such that Fmo x = d o m. F-coalgebras and their homomorphisms form the category

Coalg.
Markov Chains Quantum Markov Chains
c: X — D[071]X c: X —> DngX
Probabilistic LTSs Quantum LTSs

c: X > P(Dyo1X)* c: X —» P(Dgr, X)*



Example: Quantum Teleportaion

11
Alice := Mg(q1, g2 > x).clx Bob := Z c?i.Bob;
i=00
Alice
|
| 7| [woXwT|

Ix[00/x] Ix[01/x] Ix[10/x] Ix[11/x]

l!OO l!01 l!lo l!ll
O @) O O



Example: Quantum Teleportaion

11
Alice := Mg(q1, g2 > x).clx Bob := Z c?i.Bob;
i=00

Bob
700 711

Boboo BOb01 BOblo BObl
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Behavioural Equivalences
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Behavioural Equivalences
R
R< X x Y is an Aczel-Mendler / lx
X DgR Y

Bisimulation if there exists a span of

coalgebra homomorphisms. ~ap, is the lc / \ ld
largest AM-bisimulation. Dgmy Dpm
DeX DgY
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Behavioural Equivalences
R
R< X x Y is an Aczel-Mendler / lx
X DgR Y

Bisimulation if there exists a span of
coalgebra homomorphisms. ~ap, is the lc / \ ld
largest AM-bisimulation. Dgmy  Dgma

DpX DrY

R
R c X x Y is a Larsen-Skou X / \ Y
Bisimulation if it the Set—pullback of lcx y |
a cospan of coalgebra homomorpsisms. Ds X 7 Dg Y
~1s is the largest LS bisimulation.
DJEN lz Amz
DrZ
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Weak Pullback Preservation

Theorem: Dg preserves weak pullbacks iff E is decomposable. In that case, Coalgg has
weak pullbacks.

a b

E is decomposable if for all B -

a,b,c,deE such that a+ b=c+d is - -
. . €11 t+ €éi2 = C

defined, there exists e11, €12, €1, €0 € E
+ +
such that:
€1 + en = d
Theorem: Let [E be an effect algebra. For any Dg-coalgebras ¢ and d:
always E decomposable
XNAMy e XNLSy XNAMy B e — XNLSy
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The quantum case

An example inspired by [Ogawa 2014]:

a)
c = |O)<O|KR';|1X1|
(0}
I
t
[0
[+ X+ =X~
tlﬁ‘j\t‘z
13



The quantum case

An example inspired by [Ogawa 2014]:
S
a)
c = [oYo] o [1X1]
u 1(/// \\\N Z///' \\\N
“ c d e
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v
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The quantum case

An example inspired by [Ogawa 2014]:
al r
o TS AN
I+X X-
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The quantum case

An example inspired by [Ogawa 2014]:

S
al r

c = |O)<O|‘HR';|1X1
N /
¢ 11% \
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e = [+ =X~
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The quantum case

An example inspired by [Ogawa 2014]:
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Why we choose Larsen-Skou Bisimilarity:

e |t is an equivalence relation

e It corresponds to the coalgebraic notion of behavioural equivalence (i.e. identity in

the final colagebra)
e It is correct and complete with respect to the observable probabilistic

behaviour

14



Probabilistic Behaviour

We can evaluate a QLTS with a quantum input state p € DMy, by updating its weights.

iib)



Lifting Quantum Isomorphisms

e A quantum state p € DMy, gives an effect algebra homomorphism m,, : & — [0,1]

my(E) = tr(Ep)
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Lifting Quantum Isomorphisms

e A quantum state p € DMy, gives an effect algebra homomorphism m,, : & — [0,1]

my(E) = tr(Ep)

o A effect algebra homomorphism m, gives a natural transformation
ap : Der,y = Doy
ap(D)(x) = my(D(x))
e A nat.transf. «,: Dgr,, = Djg 1] gives a nat.transf. P(ap)L by whiskering

e A nat.transf. a,: F = G gives a functor of coalgebras - |,: Coalgr — Coalgs

X |p=x clp=apoc flp=f

16



Correctness and Completeness

Theorem: Thanks to functoriality, for any two QLTS ¢ and d:

X ~sy = Voe DMy x|, ~1s ylp

Moreover, if we restrict the weights to a finite sub-algebra &f;; ¢ £fy, we have an
injective morphism from &f}; to [0,1].

Theorem: For any PDELf, -coalgebras ¢ and d:
H

X ~iSsYy = Vpe DMy x 1, ~15 yip

17



Parallel Composition




Parallel Composition

Compositionality is key for verification: we want to verify the correctness of the
Teleportation Protocol by studying Alice and Bob separately.
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Parallel Composition

Compositionality is key for verification: we want to verify the correctness of the
Teleportation Protocol by studying Alice and Bob separately.

It is typical to consider Parallel Composition: Tel = Alice || Bob.

| ?
What is the parallel composition of two ELTSs? If s O nadt > %, what about s || t?
In the probabilistic case s || t — © -, the joint probability distribution.

We need a natural transformation a.: DgX x DpY = Dg(X x Y'). We search for a

commutative monad.
18



Effect Monoids and Monads

If E is a commutative monoid object in EA

Then Dg is a monad on Set
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Effect Monoids and Monads

If E is a commutative monoid object in EA

There is an morphism V : E® E — E that is commutative associative and unital

V(e,f)=V(f,e) V(e,V(f,g))=V(V(e,f),g)
V(e,1g) =e V(e,0g) = Og

Then Dg is a monad on Set
There are a unit n: Id = T and a multiplication u: DgDg = Dg defined as

n(x)=lgex  p(QeieAi)x=73 V(e Ai(x))

19



PCM of Quantum Systems

(&f,C,®) is not an effect monoid! It does not preserve dimension.
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PCM of Quantum Systems

(&f,C,®) is not an effect monoid! It does not preserve dimension. It is a effect monoid
graded on a PCM.

o Let Sys = {S;} be a fixed set of quantum systems.
e S=(P(Sys),s,w) forms a PCM where w is the partial disjoint union.

e Each collection of systems C € P(Sys) has an associated a Hilbert space obtained
by tensoring.

20



Graded Monoid of Quantum Effects

Quantum effects carry a commutative S-graded effect monoid structure, i.e.:

e An effect algebra E¢ = &fy for any collection C € P(Sys)
e An operator V¢ p :Ec ® Ep - Ecyp defined by V(E1, Ex) = Sortc p(E1 ®« Ep),

21



Graded Effect Monoids and Monads

If {E,} is a commutative M-graded monoid object in EA

Then Dg is a commutative M-graded monad on Set
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Graded Effect Monoids and Monads

If {E,} is a commutative M-graded monoid object in EA

There are commutative associative and unital morphisms V, m : E, @ Ey — Eppm
Then Dg is a commutative M-graded monad on Set

There are endofunctors T, = Dg,, a unit n: Id = Tg and a multiplication
w: TnTm = Thim such that

Tm,ufn,o Tm
Tm 7—n 7—o — Tm 7—n+o Tm —77> Tm TO
MUm,n Tol/ l/,u‘m,n+o n Tml \ lum,o
Tm+n 7—o l‘m—+n,o) Tm+n+o 7—0 Tm W 7—m

There is a nat. transf. a: T,X x T, Y = T, m(X x Y) given by strength.

22



Synchronization

Consider the graded monad Q¢ = P(D]EC)L. Given two coalgebras X = QcX and
y 4 QpY we define their CCS-style synchronization ¢ || d: X x Y - Qcup(X x Y)

s5D t g sho tha
sltSa@®@,{t~1Ip}) sltLa{s~Ic},T)  s|t>a®,%)

23



Synchronization

Consider the graded monad Q¢ = P(D]EC)L. Given two coalgebras X = QcX and
y 4 QpY we define their CCS-style synchronization ¢ || d: X x Y - Qcup(X x Y)

s5D t g sho tha
sltSa@®@,{t~1Ip}) sltLa{s~Ic},T)  s|t>a®,%)

We have defined a functor - || - : Coalg_ x Coalgq, — Coalgg_ . Since it preserves
bisimilarity, we also have that

s~iss, t~st — sltess |t

23



Conclusion and Future Works

e We use ELTSs to model probabilistic and quantum systems uniformly
e \We define two bisimilarities, and prove that LS-bisimilarity is in general coarser

e In the quantum case, LS-bisimilarity is correct and complete with respect to the
probabilistic behavioural equivalence

e When the effects chosen as weights form a graded monoid, we have a graded
parallel composition of coalgebras

Future Work:

e Dealing with superoperator distributions instead of probability distributions

e Defining an adequate graded GSOS format and proving congruence for the standard
CCS operators

24



Thank you

Question time

2
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