# Effect-labelled Coalgebras for Quantum Verification

ACT 2024

Lorenzo Ceragioli Elena Di Lavore Giuseppe Lomurno <u>Gabriele Tedeschi</u> June 20, 2024

# Intro

- Modelling concurrent systems is a challenging task
- Lot of different characterization, both syntactical and semantic, also in the probabilistic case
- Quantum systems are not just probabilistic! How to characterize their **observable behaviour?**
- Start from quantum theory (*effects*) and build up to computer science (*ELTS*).

- We model systems which run in parallel, communicate and act according to their qubits.
- Effect-weighted LTSs (ELTSs) encompass both probabilistic and quantum systems.
- We study their behavioural equivalence
- Compositional reasoning thanks to graded operators on  $\mathbb{E}LTS$ .

## Modelling Concurrent Systems







#### **Modelling Concurrent Systems**



LTS:stateful computations with non-deterministic and/or probabilistic aspects Coalgebras:  $X \to \mathcal{P}(X)^L$ ,  $X \to D(X)$ ,  $X \to \mathcal{P}(D(X))^L$ 

#### **Quantum States and effects**

Quantum States are density matrices, representing distributions of statevectors.

$$DM_{\mathcal{H}} = \left\{ \rho \in \mathbb{C}^{d \times d} \mid \mathbf{0}_d \sqsubseteq \rho, tr(\rho) = 1 \right\}$$

Examples:

 $|0\rangle\langle 0|, |1\rangle\langle 1|, |+\rangle\langle +|, \mathbb{I}/2$ 

Quantum States are density matrices, representing distributions of statevectors.

$$DM_{\mathcal{H}} = \left\{ \rho \in \mathbb{C}^{d \times d} \mid \mathbf{0}_d \sqsubseteq \rho, tr(\rho) = 1 \right\}$$

Examples:

$$|0\rangle\langle 0|, |1\rangle\langle 1|, |+\rangle\langle +|, \mathbb{I}/2$$

**Quantum Effects** are functions from states to probabilities,  $\mathcal{E}f_{\mathcal{H}} \simeq \mathbf{Conv}(DM_{\mathcal{H}}, [0, 1])$ . They are represented as positive matrices smaller than the identity

$$\mathcal{E}f_{\mathcal{H}} = \left\{ E \in \mathbb{C}^{d \times d} \mid \mathbf{0}_d \sqsubseteq E \sqsubseteq \mathbb{I}_d \right\}$$

Examples:

$$|0\rangle\!\langle 0|, \mathbb{I}, \frac{1}{2}|1\rangle\!\langle 1|$$

- e' is the unique element in E such that e + e' = 1 with 1 = 0';
- e + 1 is defined only when e = 0.

- e' is the unique element in E such that e + e' = 1 with 1 = 0';
- e + 1 is defined only when e = 0.

Some Examples:

• Probabilities  $\langle [0,1], 0, +, 1 - \cdot \rangle$ 

- e' is the unique element in E such that e + e' = 1 with 1 = 0';
- e + 1 is defined only when e = 0.

Some Examples:

- Probabilities  $\langle [0,1],0,+,1-\;\cdot\;\rangle$
- $2 = \{0, 1\}$

- e' is the unique element in E such that e + e' = 1 with 1 = 0';
- e + 1 is defined only when e = 0.

Some Examples:

- Probabilities  $\langle [0,1], 0, +, 1 \cdot \rangle$
- $2 = \{0, 1\}$

•  $\sigma$ -algebras with disjoint union

- e' is the unique element in E such that e + e' = 1 with 1 = 0';
- e + 1 is defined only when e = 0.

Some Examples:

- Probabilities  $\langle [0,1], 0, +, 1 \cdot \rangle$
- $2 = \{0, 1\}$

- $\sigma$ -algebras with disjoint union
- Quantum Effects

- e' is the unique element in E such that e + e' = 1 with 1 = 0';
- e + 1 is defined only when e = 0.

Some Examples:

- Probabilities  $\left< [0,1],0,+,1-\,\cdot \right>$
- $2 = \{0, 1\}$

- $\sigma\text{-algebras}$  with disjoint union
- Quantum Effects

Effect algebras define a partial order by  $a \le b \Leftrightarrow \exists c.a + c = b$ . Effect algebras and their homomorphism form the symmetric monoidal category **EA**.

**Definition:** Given an effect algebra  $\langle \mathbb{E}, 0, +, \cdot' \rangle$  define the *effect (sub-)distributions* functor  $D_{\mathbb{E}}$ : **Set**  $\rightarrow$  **Set** 

$$D_{\mathbb{E}}X = \left\{ \Delta \in \mathbb{E}^X \ \middle| \ \operatorname{supp}(\Delta) \ \text{is finite,} \ \sum_{\in \operatorname{supp}()} \Delta(x) \leq 1_{\mathbb{E}} \right\} \qquad D_{\mathbb{E}}f(\Delta) = \lambda y \cdot \sum_{x \in f^{-1}(y)} \Delta(x)$$

where supp $(\Delta)$  is the set  $\{x \in X \mid \Delta(x) \neq 0\}$ .

**Definition:** Given an effect algebra  $\langle \mathbb{E}, 0, +, \cdot' \rangle$  define the *effect (sub-)distributions* functor  $D_{\mathbb{E}}$ : **Set**  $\rightarrow$  **Set** 

$$D_{\mathbb{E}}X = \left\{ \Delta \in \mathbb{E}^X \mid \mathsf{supp}(\Delta) \text{ is finite, } \sum_{\mathsf{esupp}()} \Delta(x) \le 1_{\mathbb{E}} \right\} \qquad D_{\mathbb{E}}f(\Delta) = \lambda y \cdot \sum_{x \in f^{-1}(y)} \Delta(x)$$

where supp( $\Delta$ ) is the set {  $x \in X \mid \Delta(x) \neq 0$  }.

$$D_{[0,1]}X \ni \{x \mapsto 1\}, \{x \mapsto 0.5, y \mapsto 0.5\}, \{z \mapsto 0.3\}...$$
$$D_{\mathcal{E}f_{\mathcal{H}}}X \ni \{x \mapsto \mathbb{I}_{\mathcal{H}}\}, \{x \mapsto |+\rangle\!\!\!/ + \!\!|, y \mapsto |-\rangle\!\!/ - \!\!|\}, \{z \mapsto 0.3 \cdot \mathbb{I}_{\mathcal{H}}\}...$$

# **ELTS**s

*F*-Coalgebras: couples (X, c) with  $X \xrightarrow{c} FX$ .

Given  $X \xrightarrow{c} FX$  and  $Y \xrightarrow{d} FY$ , a **coalegebra homomorphism** is a function  $m: X \to Y$  such that  $Fm \circ x = d \circ m$ . *F*-coalgebras and their homomorphisms form the category **Coalg**<sub>*F*</sub>.

*F*-Coalgebras: couples (X, c) with  $X \xrightarrow{c} FX$ .

Given  $X \xrightarrow{c} FX$  and  $Y \xrightarrow{d} FY$ , a **coalegebra homomorphism** is a function  $m: X \to Y$  such that  $Fm \circ x = d \circ m$ . *F*-coalgebras and their homomorphisms form the category **Coalg**<sub>*F*</sub>.

**Markov Chains** 

 $c:X\to D_{[0,1]}X$ 

*F*-Coalgebras: couples (X, c) with  $X \xrightarrow{c} FX$ .

Given  $X \xrightarrow{c} FX$  and  $Y \xrightarrow{d} FY$ , a **coalegebra homomorphism** is a function  $m: X \to Y$  such that  $Fm \circ x = d \circ m$ . *F*-coalgebras and their homomorphisms form the category **Coalg**<sub>*F*</sub>.

#### **Markov Chains**

$$c:X\to D_{[0,1]}X$$

# Probabilistic LTSs

 $c: X \to P(D_{[0,1]}X)^L$ 

*F*-Coalgebras: couples (X, c) with  $X \xrightarrow{c} FX$ .

Given  $X \xrightarrow{c} FX$  and  $Y \xrightarrow{d} FY$ , a **coalegebra homomorphism** is a function  $m: X \to Y$  such that  $Fm \circ x = d \circ m$ . *F*-coalgebras and their homomorphisms form the category **Coalg**<sub>*F*</sub>.

Markov ChainsQuantum Markov Chains $c: X \rightarrow D_{[0,1]}X$  $c: X \rightarrow D_{\mathcal{E}f_{\mathcal{H}}}X$ 

**Probabilistic LTSs**  $c: X \to P(D_{[0,1]}X)^L$ 

*F*-Coalgebras: couples (X, c) with  $X \xrightarrow{c} FX$ .

Given  $X \xrightarrow{c} FX$  and  $Y \xrightarrow{d} FY$ , a **coalegebra homomorphism** is a function  $m: X \to Y$  such that  $Fm \circ x = d \circ m$ . *F*-coalgebras and their homomorphisms form the category **Coalg**<sub>*F*</sub>.

Markov ChainsQuantum Markov Chains $c: X \to D_{[0,1]}X$  $c: X \to D_{\mathcal{E}f_{\mathcal{H}}}X$ 

**Probabilistic LTSs**  $c: X \to P(D_{[0,1]}X)^L$  **Quantum LTSs**  $c: X \to P(D_{\mathcal{E}f_{\mathcal{H}}}X)^L$ 

#### **Example: Quantum Teleportaion**



#### **Example: Quantum Teleportaion**



### **Behavioural Equivalences**

 $R \subseteq X \times Y$  is an **Aczel-Mendler Bisimulation** if there exists a *span* of coalgebra homomorphisms.  $\sim_{AM}$  is the largest AM-bisimulation.



 $R \subseteq X \times Y$  is an **Aczel-Mendler Bisimulation** if there exists a *span* of coalgebra homomorphisms.  $\sim_{AM}$  is the largest AM-bisimulation.

 $R \subseteq X \times Y$  is a Larsen-Skou Bisimulation if it the Set-pullback of a *cospan* of coalgebra homomorpsisms.  $\sim_{LS}$  is the largest LS bisimulation.



#### Weak Pullback Preservation

**Theorem:**  $D_{\mathbb{E}}$  preserves weak pullbacks iff  $\mathbb{E}$  is decomposable. In that case, **Coalg**<sub>*F*</sub> has weak pullbacks.

 $\mathbb{E} \text{ is } decomposable \text{ if for all} } \qquad \begin{array}{ll} a & b \\ = & = \\ a, b, c, d \in \mathbb{E} \text{ such that } a + b = c + d \text{ is} \\ \text{defined, there exists } e_{11}, e_{12}, e_{21}, e_{22} \in \mathbb{E} \\ \text{such that:} \\ \end{array} \qquad \begin{array}{ll} a & b \\ = & = \\ e_{11} + e_{12} = c \\ + & + \\ e_{21} + e_{22} = d \end{array}$ 

**Theorem:** Let  $\mathbb{E}$  be an effect algebra. For any  $D_{\mathbb{E}}$ -coalgebras c and d:

 $x \sim_{AM} y \xrightarrow{\text{always}} x \sim_{LS} y \qquad x \sim_{AM} y \xleftarrow{\mathbb{E} \text{ decomposable}} x \sim_{LS} y$ 











- It is an equivalence relation
- It corresponds to the coalgebraic notion of behavioural equivalence (i.e. identity in the final colagebra)
- It is correct and complete with respect to the observable probabilistic behaviour

We can **evaluate** a QLTS with a quantum input state  $\rho \in DM_{\mathcal{H}}$ , by updating its weights.



#### Lifting Quantum Isomorphisms

• A quantum state  $\rho \in DM_{\mathcal{H}}$  gives an effect algebra homomorphism  $m_{\rho} : \mathcal{E}f_{\mathcal{H}} \rightarrow [0,1]$ 

 $m_{\rho}(E) = tr(E\rho)$ 

# Lifting Quantum Isomorphisms

• A quantum state  $\rho \in DM_{\mathcal{H}}$  gives an effect algebra homomorphism  $m_{\rho} : \mathcal{E}f_{\mathcal{H}} \rightarrow [0,1]$ 

 $m_{\rho}(E) = tr(E\rho)$ 

• A effect algebra homomorphism  $m_{\rho}$  gives a natural transformation  $\alpha_{\rho}: D_{\mathcal{E}f_{\mathcal{H}}} \Rightarrow D_{[0,1]}$ 

 $\alpha_{\rho}(\mathfrak{D})(x) = m_{\rho}(\mathfrak{D}(x))$ 

# Lifting Quantum Isomorphisms

• A quantum state  $\rho \in DM_{\mathcal{H}}$  gives an effect algebra homomorphism  $m_{\rho} : \mathcal{E}f_{\mathcal{H}} \rightarrow [0,1]$ 

 $m_{\rho}(E) = tr(E\rho)$ 

• A effect algebra homomorphism  $m_{\rho}$  gives a natural transformation  $\alpha_{\rho}: D_{\mathcal{E}\!f_{\mathcal{H}}} \Rightarrow D_{[0,1]}$ 

$$\alpha_{\rho}(\mathfrak{D})(x) = m_{\rho}(\mathfrak{D}(x))$$

• A nat.transf.  $\alpha_{\rho}: D_{\mathcal{E}f_{\mathcal{H}}} \Rightarrow D_{[0,1]}$  gives a nat.transf.  $P(\alpha_{\rho})^{L}$  by whiskering

# Lifting Quantum Isomorphisms

• A quantum state  $\rho \in DM_{\mathcal{H}}$  gives an effect algebra homomorphism  $m_{\rho} : \mathcal{E}f_{\mathcal{H}} \rightarrow [0, 1]$ 

 $m_{\rho}(E) = tr(E\rho)$ 

• A effect algebra homomorphism  $m_{\rho}$  gives a natural transformation  $\alpha_{\rho}: D_{\mathcal{E}f_{\mathcal{H}}} \Rightarrow D_{[0,1]}$ 

$$lpha_
ho(\mathfrak{D})(x)$$
 =  $m_
ho(\mathfrak{D}(x))$ 

- A nat.transf.  $\alpha_{\rho}: D_{\mathcal{E}f_{\mathcal{H}}} \Rightarrow D_{[0,1]}$  gives a nat.transf.  $P(\alpha_{\rho})^{L}$  by whiskering
- A nat.transf.  $\alpha_{\rho}: F \Rightarrow G$  gives a functor of coalgebras  $\cdot \downarrow_{\rho}: \mathbf{Coalg}_{F} \rightarrow \mathbf{Coalg}_{G}$

$$x\downarrow_{\rho}=x$$
  $c\downarrow_{\rho}=\alpha_{\rho}\circ c$   $f\downarrow_{\rho}=f$ 

**Theorem:** Thanks to functoriality, for any two QLTS *c* and *d*:

$$x \sim_{LS} y \quad \Rightarrow \quad \forall \rho \in DM_{\mathcal{H}} \quad x \downarrow_{\rho} \sim_{LS} y \downarrow_{\rho}$$

Moreover, if we restrict the weights to a finite sub-algebra  $\mathcal{E}f'_{\mathcal{H}} \subsetneq \mathcal{E}f_{\mathcal{H}}$ , we have an injective morphism from  $\mathcal{E}f'_{\mathcal{H}}$  to [0,1].

**Theorem:** For any  $PD_{\mathcal{E}f'_{\mathcal{H}}}^{L}$ -coalgebras c and d:  $x \sim_{LS} y \iff \forall \rho \in DM_{\mathcal{H}} \quad x \downarrow_{\rho} \sim_{LS} y \downarrow_{\rho}$ 

# **Parallel Composition**

It is typical to consider **Parallel Composition**:  $Tel = Alice \parallel Bob$ .

It is typical to consider **Parallel Composition**:  $Tel = Alice \parallel Bob$ .

What is the parallel composition of two  $\mathbb{E}LTSs$ ? If  $s \xrightarrow{!0} \mathfrak{D}$  ad  $t \xrightarrow{?0} \mathfrak{T}$ , what about  $s \parallel t$ ? In the probabilistic case  $s \parallel t \xrightarrow{\tau} \mathfrak{D} \cdot \mathfrak{T}$ , the *joint probability distribution*.

It is typical to consider **Parallel Composition**:  $Tel = Alice \parallel Bob$ .

What is the parallel composition of two  $\mathbb{E}LTSs$ ? If  $s \xrightarrow{!0} \mathfrak{D}$  ad  $t \xrightarrow{?0} \mathfrak{T}$ , what about  $s \parallel t$ ? In the probabilistic case  $s \parallel t \xrightarrow{\tau} \mathfrak{D} \cdot \mathfrak{T}$ , the *joint probability distribution*.

We need a natural transformation  $\alpha : D_{\mathbb{E}}X \times D_{\mathbb{E}}Y \Rightarrow D_{\mathbb{E}}(X \times Y)$ . We search for a **commutative monad**.

### **Effect Monoids and Monads**

If  $\mathbb E$  is a commutative monoid object in EA

Then  $D_{\mathbb{E}}$  is a **monad** on **Set** 

#### If $\mathbb E$ is a commutative monoid object in EA

There is an morphism  $\nabla:\mathbb{E}\otimes\mathbb{E}\to\mathbb{E}$  that is commutative associative and unital

$$\nabla(e, f) = \nabla(f, e) \qquad \nabla(e, \nabla(f, g)) = \nabla(\nabla(e, f), g)$$
$$\nabla(e, 1_{\mathbb{E}}) = e \qquad \nabla(e, 0_{\mathbb{E}}) = 0_{\mathbb{E}}$$

Then  $D_{\mathbb{E}}$  is a **monad** on **Set** 

#### If $\mathbb E$ is a commutative monoid object in EA

There is an morphism  $\nabla:\mathbb{E}\otimes\mathbb{E}\to\mathbb{E}$  that is commutative associative and unital

$$\nabla(e,f) = \nabla(f,e) \qquad \nabla(e,\nabla(f,g)) = \nabla(\nabla(e,f),g)$$
$$\nabla(e,1_{\mathbb{E}}) = e \qquad \nabla(e,0_{\mathbb{E}}) = 0_{\mathbb{E}}$$

Then  $D_{\mathbb{E}}$  is a **monad** on **Set** 

There are a unit  $\eta: Id \Rightarrow T$  and a multiplication  $\mu: D_{\mathbb{E}}D_{\mathbb{E}} \Rightarrow D_{\mathbb{E}}$  defined as

$$\eta(x) = \mathbb{1}_{\mathbb{E}} \bullet x \qquad \mu(\sum_{i} e_{i} \bullet \Delta_{i}) x = \sum_{i} \nabla(e_{i}, \Delta_{i}(x))$$

 $\langle {\mathcal {E}}\!{\!\rm f}, {\mathbb C}, \otimes \rangle$  is not an effect monoid! It does not preserve dimension.

 $\langle \mathcal{E}f, \mathbb{C}, \otimes \rangle$  is not an effect monoid! It does not preserve dimension. It is a effect monoid graded on a PCM.

 $\langle \mathcal{E}f, \mathbb{C}, \otimes \rangle$  is not an effect monoid! It does not preserve dimension. It is a effect monoid graded on a PCM.

- Let  $Sys = \{S_i\}$  be a fixed set of quantum systems.
- $S = \langle \mathcal{P}(Sys), \emptyset, \uplus \rangle$  forms a PCM where  $\uplus$  is the partial disjoint union.
- Each collection of systems C ∈ P(Sys) has an associated a Hilbert space obtained by tensoring.

Quantum effects carry a commutative  $\mathcal{S}$ -graded effect monoid structure, i.e.:

- An effect algebra  $\mathbb{E}_C = \mathcal{E}f_{\mathcal{H}_C}$  for any collection  $C \in \mathcal{P}(Sys)$
- An operator  $\nabla_{C,D} : \mathbb{E}_C \otimes \mathbb{E}_D \to \mathbb{E}_{C \uplus D}$  defined by  $\nabla(E_1, E_2) = Sort_{C,D}(E_1 \otimes_k E_2)$ ,

If  $\{\mathbb{E}_n\}$  is a commutative *M*-graded monoid object in EA

Then  $D_{\mathbb{E}}$  is a **commutative** *M*-graded monad on **Set** 

If  $\{\mathbb{E}_n\}$  is a commutative *M*-graded monoid object in **EA** 

There are commutative associative and unital morphisms  $\nabla_{n,m} : \mathbb{E}_n \otimes \mathbb{E}_m \to \mathbb{E}_{n+m}$ 

Then  $D_{\mathbb{E}}$  is a **commutative** *M*-graded monad on **Set** 

### If $\{\mathbb{E}_n\}$ is a commutative *M*-graded monoid object in EA

There are commutative associative and unital morphisms  $\nabla_{n,m} : \mathbb{E}_n \otimes \mathbb{E}_m \to \mathbb{E}_{n+m}$ 

Then  $D_{\mathbb{E}}$  is a **commutative** *M*-graded monad on **Set** 

There are endofunctors  $T_n = D_{\mathbb{E}_n}$ , a unit  $\eta : Id \Rightarrow T_0$  and a multiplication  $\mu : T_n T_m \Rightarrow T_{n+m}$  such that



There is a nat. transf.  $\alpha : T_n X \times T_m Y \Rightarrow T_{n+m}(X \times Y)$  given by strength.

# Synchronization

Consider the graded monad  $Q_C = \mathcal{P}(D_{\mathbb{E}_C})^L$ . Given two coalgebras  $X \xrightarrow{c} Q_C X$  and  $Y \xrightarrow{d} Q_D Y$  we define their CCS-style synchronization  $c \parallel d : X \times Y \to Q_{C \uplus D}(X \times Y)$ 

$$\frac{s \xrightarrow{\mu} \mathfrak{D}}{s \parallel t \xrightarrow{\mu} \alpha(\mathfrak{D}, \{t \mapsto \mathbb{I}_D\})} \qquad \frac{t \xrightarrow{\mu} \mathfrak{T}}{s \parallel t \xrightarrow{\mu} \alpha(\{s \mapsto \mathbb{I}_C\}, \mathfrak{T})} \qquad \frac{s \xrightarrow{\mu} \mathfrak{D} \quad t \xrightarrow{\overline{\mu}} \mathfrak{T}}{s \parallel t \xrightarrow{\tau} \alpha(\mathfrak{D}, \mathfrak{T})}$$

# Synchronization

Consider the graded monad  $Q_C = \mathcal{P}(D_{\mathbb{E}_C})^L$ . Given two coalgebras  $X \xrightarrow{c} Q_C X$  and  $Y \xrightarrow{d} Q_D Y$  we define their CCS-style synchronization  $c \parallel d : X \times Y \to Q_{C \uplus D}(X \times Y)$ 

$$\frac{s \xrightarrow{\mu} \mathfrak{D}}{s \parallel t \xrightarrow{\mu} \alpha(\mathfrak{D}, \{t \mapsto \mathbb{I}_D\})} \qquad \frac{t \xrightarrow{\mu} \mathfrak{T}}{s \parallel t \xrightarrow{\mu} \alpha(\{s \mapsto \mathbb{I}_C\}, \mathfrak{T})} \qquad \frac{s \xrightarrow{\mu} \mathfrak{D} \quad t \xrightarrow{\overline{\mu}} \mathfrak{T}}{s \parallel t \xrightarrow{\tau} \alpha(\mathfrak{D}, \mathfrak{T})}$$

We have defined a functor  $\cdot \| \cdot : \mathbf{Coalg}_{Q_C} \times \mathbf{Coalg}_{Q_D} \to \mathbf{Coalg}_{Q_{C \uplus D}}$ . Since it preserves bisimilarity, we also have that

$$s \sim_{LS} s', t \sim_{LS} t' \implies s \parallel t \sim_{LS} s' \parallel t'$$

# **Conclusion and Future Works**

- $\bullet$  We use  $\mathbb{E}\mathsf{LTSs}$  to model probabilistic and quantum systems uniformly
- We define two bisimilarities, and prove that LS-bisimilarity is in general coarser
- In the quantum case, LS-bisimilarity is correct and complete with respect to the probabilistic behavioural equivalence
- When the effects chosen as weights form a graded monoid, we have a graded parallel composition of coalgebras

Future Work:

- Dealing with superoperator distributions instead of probability distributions
- Defining an adequate graded GSOS format and proving congruence for the standard CCS operators

# Thank you

Question time