
Retracing GoI with Phil

Samson Abramsky

Department of Computer Science, UCL

MFPS 2024

Memories of Phil
Enthusiasm, Laughter, Kindness

1 / 23

Paper with Phil
Abramsky, Samson, Esfandiar Haghverdi, and Philip Scott. "Geometry of interaction and
linear combinatory algebras." Mathematical Structures in Computer Science 12, no. 5
(2002): 625-665.

2 / 23

Geometry of Interaction

Series of papers by Girard:
• Multiplicatives (1988, unpublished preprint)
• Towards a Geometry of Interaction (1989)
• Geometry of Interaction I: Interpretation of System F (1989)
• Geometry of Interaction II-V (1988,1995,2011)

Early work by Danos, Regnier and Malacaria
• Some results on the interpretation of λ-calculis in operator algebras (M & R, 1991)
• Local and asynchronous beta-reduction (D & R, 1993)

SA and Radha Jagadeesan (1992)
• New Foundations for the Geometry of Interaction
• Games and Full Completeness for Multiplicative Linear Logic

3 / 23

GoI: what was that all about?
Views of the elephant:

• D & R:
▶ leads to a novel kind of abstract machine
▶ connections with optimal reduction

• Girard
▶ between proof theory and static semantics (e.g. coherence spaces)
▶ dynamics of cut-elimination
▶ operator algebras: a red herring

• My perspective
▶ Adapting Girard, novel way of interpolating between operational and denotational

semantics
▶ close connection with game semantics (being developed at the same time)
▶ GoI = “game semantics without games”

4 / 23

GoI: what was that all about?
Views of the elephant:

• D & R:
▶ leads to a novel kind of abstract machine
▶ connections with optimal reduction

• Girard
▶ between proof theory and static semantics (e.g. coherence spaces)
▶ dynamics of cut-elimination
▶ operator algebras: a red herring

• My perspective
▶ Adapting Girard, novel way of interpolating between operational and denotational

semantics
▶ close connection with game semantics (being developed at the same time)
▶ GoI = “game semantics without games”

4 / 23

GoI: what was that all about?
Views of the elephant:

• D & R:
▶ leads to a novel kind of abstract machine
▶ connections with optimal reduction

• Girard
▶ between proof theory and static semantics (e.g. coherence spaces)
▶ dynamics of cut-elimination
▶ operator algebras: a red herring

• My perspective
▶ Adapting Girard, novel way of interpolating between operational and denotational

semantics
▶ close connection with game semantics (being developed at the same time)
▶ GoI = “game semantics without games”

4 / 23

GoI: what was that all about?
Views of the elephant:

• D & R:
▶ leads to a novel kind of abstract machine
▶ connections with optimal reduction

• Girard
▶ between proof theory and static semantics (e.g. coherence spaces)
▶ dynamics of cut-elimination
▶ operator algebras: a red herring

• My perspective
▶ Adapting Girard, novel way of interpolating between operational and denotational

semantics
▶ close connection with game semantics (being developed at the same time)
▶ GoI = “game semantics without games”

4 / 23

GoI in one picture
-�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA ?

?

?

?

??

??

C+

C−

B−

B+

B+

B−

A−

A+

gf

Composition as symmetric feedback.

Almost commutative! (up to symmetry).

5 / 23

GoI in one picture
-�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA ?

?

?

?

??

??

C+

C−

B−

B+

B+

B−

A−

A+

gf

Composition as symmetric feedback.
Almost commutative! (up to symmetry).

5 / 23

Traced monoidal categories
f : A⊗B −→ C ⊗B

Tr(f) : A −→ C

? ?

f

?

6 / 23

Linearity of Trace

Note that trace is linear, unlike the iteration concept of iterative
theories (Elgot, Bloom, Esik) used to model flowcharts.

f : A×B −→ B

It(f) : A −→ B

f ◦ ⟨1, It(f)⟩ = It(f)

There is no implicit sharing of wires as in iteration.

? ?

f

?
7 / 23

Mathematical essence of multiplicative GoI
• Feedback in a linear (monoidal) setting
• Building a free compact closed category from a traced category – “higher-order” vs.

“first-order”.
• The composition in this free compact closed category (i.e. symmetric feedback)

subsumes the “Execution formula”, hence the “dynamics of Cut-elimination”.

Traced monoidal categories were introduced in: Joyal, André, Ross Street, and Dominic
Verity. “Traced monoidal categories” In Mathematical proceedings of the Cambridge
Philosophical Society, vol. 119, no. 3, pp. 447-468. Cambridge University Press, 1996.

Avant la lettre:
• NFGoI built a traced monoidal category from domains and fixpoints (product based)
• In “Games and Full Completeness for MLL” it was observed that composition of

history-free strategies was given by a suitable abstraction of the Execution formula
(coproduct based)

• I showed these examples in detail to André Joyal during LiCS 1993 in Montreal.

8 / 23

Mathematical essence of multiplicative GoI
• Feedback in a linear (monoidal) setting
• Building a free compact closed category from a traced category – “higher-order” vs.

“first-order”.
• The composition in this free compact closed category (i.e. symmetric feedback)

subsumes the “Execution formula”, hence the “dynamics of Cut-elimination”.

Traced monoidal categories were introduced in: Joyal, André, Ross Street, and Dominic
Verity. “Traced monoidal categories” In Mathematical proceedings of the Cambridge
Philosophical Society, vol. 119, no. 3, pp. 447-468. Cambridge University Press, 1996.

Avant la lettre:
• NFGoI built a traced monoidal category from domains and fixpoints (product based)
• In “Games and Full Completeness for MLL” it was observed that composition of

history-free strategies was given by a suitable abstraction of the Execution formula
(coproduct based)

• I showed these examples in detail to André Joyal during LiCS 1993 in Montreal.

8 / 23

Mathematical essence of multiplicative GoI
• Feedback in a linear (monoidal) setting
• Building a free compact closed category from a traced category – “higher-order” vs.

“first-order”.
• The composition in this free compact closed category (i.e. symmetric feedback)

subsumes the “Execution formula”, hence the “dynamics of Cut-elimination”.

Traced monoidal categories were introduced in: Joyal, André, Ross Street, and Dominic
Verity. “Traced monoidal categories” In Mathematical proceedings of the Cambridge
Philosophical Society, vol. 119, no. 3, pp. 447-468. Cambridge University Press, 1996.

Avant la lettre:
• NFGoI built a traced monoidal category from domains and fixpoints (product based)
• In “Games and Full Completeness for MLL” it was observed that composition of

history-free strategies was given by a suitable abstraction of the Execution formula
(coproduct based)

• I showed these examples in detail to André Joyal during LiCS 1993 in Montreal.
8 / 23

Examples of Traced Monoidal Categories

Three families:

• “Particle style”: the tensor product is coproduct (disjoint union). Rel, Pfn, PInj, etc.
Covers the original version of GoI introduced by Girard. Matrices over a Kleene
algebra are another example. (The ‘magic formula’ for star is exactly the trace!)

• “Wave style”: the tensor product is (categorical) product. This forces the trace to be a
fixpoint (Hasegawa, Hyland), hence we are in the realm of Domain theory.
S.A. and Radha Jagadeesan, ‘New Foundations for the Geometry of Interaction’ .

• “Acausal”: Compact closed categories. (Rel,×), (FDVect,⊗).
Physical interpretation: ‘Physical Traces’, S.A. and Bob Coecke.

9 / 23

Examples of Traced Monoidal Categories

Three families:

• “Particle style”: the tensor product is coproduct (disjoint union). Rel, Pfn, PInj, etc.
Covers the original version of GoI introduced by Girard. Matrices over a Kleene
algebra are another example. (The ‘magic formula’ for star is exactly the trace!)

• “Wave style”: the tensor product is (categorical) product. This forces the trace to be a
fixpoint (Hasegawa, Hyland), hence we are in the realm of Domain theory.
S.A. and Radha Jagadeesan, ‘New Foundations for the Geometry of Interaction’ .

• “Acausal”: Compact closed categories. (Rel,×), (FDVect,⊗).
Physical interpretation: ‘Physical Traces’, S.A. and Bob Coecke.

9 / 23

Examples of Traced Monoidal Categories

Three families:

• “Particle style”: the tensor product is coproduct (disjoint union). Rel, Pfn, PInj, etc.
Covers the original version of GoI introduced by Girard. Matrices over a Kleene
algebra are another example. (The ‘magic formula’ for star is exactly the trace!)

• “Wave style”: the tensor product is (categorical) product. This forces the trace to be a
fixpoint (Hasegawa, Hyland), hence we are in the realm of Domain theory.
S.A. and Radha Jagadeesan, ‘New Foundations for the Geometry of Interaction’ .

• “Acausal”: Compact closed categories. (Rel,×), (FDVect,⊗).
Physical interpretation: ‘Physical Traces’, S.A. and Bob Coecke.

9 / 23

Examples of Traced Monoidal Categories

Three families:

• “Particle style”: the tensor product is coproduct (disjoint union). Rel, Pfn, PInj, etc.
Covers the original version of GoI introduced by Girard. Matrices over a Kleene
algebra are another example. (The ‘magic formula’ for star is exactly the trace!)

• “Wave style”: the tensor product is (categorical) product. This forces the trace to be a
fixpoint (Hasegawa, Hyland), hence we are in the realm of Domain theory.
S.A. and Radha Jagadeesan, ‘New Foundations for the Geometry of Interaction’ .

• “Acausal”: Compact closed categories. (Rel,×), (FDVect,⊗).
Physical interpretation: ‘Physical Traces’, S.A. and Bob Coecke.

9 / 23

Closing the gap
In
Abramsky, Samson. "Retracing some paths in process algebra." In International
Conference on Concurrency Theory, pp. 1-17. Springer 1996.
I showed how the basic (multiplicative) part of GoI could be understood in terms of traced
monoidal categories and the construction of the free compact closed category (essentially
the Int construction of JSV).

However, to achieve a full understanding of GoI, more was needed:
• Extending the axiomatic framework to cover the whole of GoI, and computational

universality
• GoI does not exactly give a model of Linear Logic (or λ-calculus) in the usual sense –

many extensional equalities fail. What is it doing?

I outlined an approach to answering these questions in lectures given in Siena and
Edinburgh in 1997. This developed into a joint project with Phil and Esfan (who was
doing his Ph.D. with Phil), and led to our paper.

10 / 23

Closing the gap
In
Abramsky, Samson. "Retracing some paths in process algebra." In International
Conference on Concurrency Theory, pp. 1-17. Springer 1996.
I showed how the basic (multiplicative) part of GoI could be understood in terms of traced
monoidal categories and the construction of the free compact closed category (essentially
the Int construction of JSV).

However, to achieve a full understanding of GoI, more was needed:
• Extending the axiomatic framework to cover the whole of GoI, and computational

universality
• GoI does not exactly give a model of Linear Logic (or λ-calculus) in the usual sense –

many extensional equalities fail. What is it doing?

I outlined an approach to answering these questions in lectures given in Siena and
Edinburgh in 1997. This developed into a joint project with Phil and Esfan (who was
doing his Ph.D. with Phil), and led to our paper.

10 / 23

Closing the gap
In
Abramsky, Samson. "Retracing some paths in process algebra." In International
Conference on Concurrency Theory, pp. 1-17. Springer 1996.
I showed how the basic (multiplicative) part of GoI could be understood in terms of traced
monoidal categories and the construction of the free compact closed category (essentially
the Int construction of JSV).

However, to achieve a full understanding of GoI, more was needed:
• Extending the axiomatic framework to cover the whole of GoI, and computational

universality
• GoI does not exactly give a model of Linear Logic (or λ-calculus) in the usual sense –

many extensional equalities fail. What is it doing?

I outlined an approach to answering these questions in lectures given in Siena and
Edinburgh in 1997. This developed into a joint project with Phil and Esfan (who was
doing his Ph.D. with Phil), and led to our paper.

10 / 23

Our answers

• We introduce GoI situations as an axiomatic framework for the full GoI
construction, including exponentials.

• We propose combinatory algebra as the appropriate intensional setting to capture
what GoI does.

• We introduce linear combinatory algebras, show that these give rise to standard,
computationally universal combinatory algebras, and prove our main result:

Theorem
Every GoI situation gives rise to a linear combinatory algebra.

11 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:

• Conceptually, they are algebras of closed terms.
• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.
• The equations of basic combinatory algebra are just good enough to show that all

partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.
• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.
• They also form the basis of realizability, where extensional theories can be built over

these intensional algebras.
• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:
• Conceptually, they are algebras of closed terms.

• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.
• The equations of basic combinatory algebra are just good enough to show that all

partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.
• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.
• They also form the basis of realizability, where extensional theories can be built over

these intensional algebras.
• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:
• Conceptually, they are algebras of closed terms.
• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.

• The equations of basic combinatory algebra are just good enough to show that all
partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.
• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.
• They also form the basis of realizability, where extensional theories can be built over

these intensional algebras.
• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:
• Conceptually, they are algebras of closed terms.
• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.
• The equations of basic combinatory algebra are just good enough to show that all

partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.
• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.
• They also form the basis of realizability, where extensional theories can be built over

these intensional algebras.
• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:
• Conceptually, they are algebras of closed terms.
• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.
• The equations of basic combinatory algebra are just good enough to show that all

partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.

• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.
• They also form the basis of realizability, where extensional theories can be built over

these intensional algebras.
• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:
• Conceptually, they are algebras of closed terms.
• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.
• The equations of basic combinatory algebra are just good enough to show that all

partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.
• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.

• They also form the basis of realizability, where extensional theories can be built over
these intensional algebras.

• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:
• Conceptually, they are algebras of closed terms.
• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.
• The equations of basic combinatory algebra are just good enough to show that all

partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.
• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.
• They also form the basis of realizability, where extensional theories can be built over

these intensional algebras.

• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:
• Conceptually, they are algebras of closed terms.
• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.
• The equations of basic combinatory algebra are just good enough to show that all

partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.
• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.
• They also form the basis of realizability, where extensional theories can be built over

these intensional algebras.
• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

Combinatory algebra: Ugh?

Combinatory algebras are not so bad:
• Conceptually, they are algebras of closed terms.
• Thus the basic axioms are weaker than those of λβ - they do not form λ-algebras.
• The equations of basic combinatory algebra are just good enough to show that all

partial recursive functions can be represented (acting on numerals encoded as
combinator terms).

• A beautifully succinct, purely equational presentation of computability.
• The Curry correspondence - they correspond to Hilbert-style axiomatizations of logics.
• They also form the basis of realizability, where extensional theories can be built over

these intensional algebras.
• They are handy for substructural logics, e.g. BCI and BCK.

Crucially, they capture the right level of intensionality for GoI, explaining why it suffices
for computation.

12 / 23

The Curry combinators
Curry’s original set of combinators was B, C, K, and W:

B · x · y · z = x · (y · z)
C · x · y · z = x · z · y
W · x · y = x · y · y

These are equivalent to the usual SK-combinators, thus functionally complete,
computationally universal, etc.

They have the following principal types:

I : α → α Axiom
B : (β → γ) → (α → β) → α → γ Cut
C : (α → β → γ) → β → α → γ Exchange
K : α → β → α Weakening
W : (α → α → β) → α → β Contraction

13 / 23

The Curry combinators
Curry’s original set of combinators was B, C, K, and W:

B · x · y · z = x · (y · z)
C · x · y · z = x · z · y
W · x · y = x · y · y

These are equivalent to the usual SK-combinators, thus functionally complete,
computationally universal, etc.

They have the following principal types:

I : α → α Axiom
B : (β → γ) → (α → β) → α → γ Cut
C : (α → β → γ) → β → α → γ Exchange
K : α → β → α Weakening
W : (α → α → β) → α → β Contraction

13 / 23

Linear Combinatory Algebras
These are structures (A, ., !), where in addition to the applicative structure (A, .) we have
a unary operator !.

Logically, this corresponds to the Necessitation rule for modal logic:

A

□A

There are constants B,C, I,K,W,D, δ, F satisfying:
1. Bxyz = x(yz) Composition, Cut
2. Cxyz = (xz)y Exchange
3. Ix = x Identity
4. Kx!y = x Weakening
5. Wx!y = x!y!y Contraction
6. D!x = x Dereliction
7. δ!x = !!x Comultiplication
8. F !x!y = !(xy) Monoidal Functoriality

14 / 23

Linear Combinatory Algebras
These are structures (A, ., !), where in addition to the applicative structure (A, .) we have
a unary operator !.

Logically, this corresponds to the Necessitation rule for modal logic:

A

□A

There are constants B,C, I,K,W,D, δ, F satisfying:
1. Bxyz = x(yz) Composition, Cut
2. Cxyz = (xz)y Exchange
3. Ix = x Identity
4. Kx!y = x Weakening
5. Wx!y = x!y!y Contraction
6. D!x = x Dereliction
7. δ!x = !!x Comultiplication
8. F !x!y = !(xy) Monoidal Functoriality

14 / 23

Linear Combinatory Algebras
These are structures (A, ., !), where in addition to the applicative structure (A, .) we have
a unary operator !.

Logically, this corresponds to the Necessitation rule for modal logic:

A

□A

There are constants B,C, I,K,W,D, δ, F satisfying:
1. Bxyz = x(yz) Composition, Cut
2. Cxyz = (xz)y Exchange
3. Ix = x Identity
4. Kx!y = x Weakening
5. Wx!y = x!y!y Contraction
6. D!x = x Dereliction
7. δ!x = !!x Comultiplication
8. F !x!y = !(xy) Monoidal Functoriality

14 / 23

LCA and Linear Logic
The principal types:

1. B : (β ⊸ γ) ⊸ (α ⊸ β) ⊸ α ⊸ γ

2. C : (α ⊸ β ⊸ γ) ⊸ (β ⊸ α ⊸ γ)

3. I : α ⊸ α

4. K : α ⊸ !β ⊸ α

5. W : (!α ⊸ !α ⊸ β) ⊸ !α ⊸ β

6. D : !α ⊸ α

7. δ : !α ⊸ !!α
8. F : !(α ⊸ β) ⊸ !α ⊸ !β.

This corresponds to a Hilbert-style axiomatization of ⊸, ! fragment of Linear Logic.

A combinatory version of the Girard translation results in:

Theorem
Given an LCA, we can construct a standard CA, where x.sy := x.!y.

15 / 23

LCA and Linear Logic
The principal types:

1. B : (β ⊸ γ) ⊸ (α ⊸ β) ⊸ α ⊸ γ

2. C : (α ⊸ β ⊸ γ) ⊸ (β ⊸ α ⊸ γ)

3. I : α ⊸ α

4. K : α ⊸ !β ⊸ α

5. W : (!α ⊸ !α ⊸ β) ⊸ !α ⊸ β

6. D : !α ⊸ α

7. δ : !α ⊸ !!α
8. F : !(α ⊸ β) ⊸ !α ⊸ !β.

This corresponds to a Hilbert-style axiomatization of ⊸, ! fragment of Linear Logic.

A combinatory version of the Girard translation results in:

Theorem
Given an LCA, we can construct a standard CA, where x.sy := x.!y.

15 / 23

LCA and Linear Logic
The principal types:

1. B : (β ⊸ γ) ⊸ (α ⊸ β) ⊸ α ⊸ γ

2. C : (α ⊸ β ⊸ γ) ⊸ (β ⊸ α ⊸ γ)

3. I : α ⊸ α

4. K : α ⊸ !β ⊸ α

5. W : (!α ⊸ !α ⊸ β) ⊸ !α ⊸ β

6. D : !α ⊸ α

7. δ : !α ⊸ !!α
8. F : !(α ⊸ β) ⊸ !α ⊸ !β.

This corresponds to a Hilbert-style axiomatization of ⊸, ! fragment of Linear Logic.

A combinatory version of the Girard translation results in:

Theorem
Given an LCA, we can construct a standard CA, where x.sy := x.!y.

15 / 23

GoI situations
A GoI Situation is a triple (C, T, U) where:
• C is a traced symmetric monoidal category
• T : C −→ C is a traced symmetric monoidal functor with the following retractions

(which are monoidal natural transformations):
1. e : TT ◁ T : e′ (Comultiplication)
2. d : Id◁ T : d′ (Dereliction)
3. c : T ⊗ T ◁ T : c′ (Contraction)
4. w : KI ◁ T : w′ (Weakening), where KI is the constant I functor.

We apply the GoI (or Int) construction to C to get a compact closed category G(C). We
can define ! on G(C) using the functor T .

Because the monoidal comonadic structure of T holds only “up to retractions”, we get only
a “weak linear category”, in which the naturality requirements are weakened to pointwise
naturality, i.e. with respect to arrows I −→ A.

This matches the idea that in combinatory logic, in general λ-equations hold only for
closed terms.

16 / 23

GoI situations
A GoI Situation is a triple (C, T, U) where:
• C is a traced symmetric monoidal category
• T : C −→ C is a traced symmetric monoidal functor with the following retractions

(which are monoidal natural transformations):
1. e : TT ◁ T : e′ (Comultiplication)
2. d : Id◁ T : d′ (Dereliction)
3. c : T ⊗ T ◁ T : c′ (Contraction)
4. w : KI ◁ T : w′ (Weakening), where KI is the constant I functor.

We apply the GoI (or Int) construction to C to get a compact closed category G(C). We
can define ! on G(C) using the functor T .

Because the monoidal comonadic structure of T holds only “up to retractions”, we get only
a “weak linear category”, in which the naturality requirements are weakened to pointwise
naturality, i.e. with respect to arrows I −→ A.

This matches the idea that in combinatory logic, in general λ-equations hold only for
closed terms.

16 / 23

GoI situations
A GoI Situation is a triple (C, T, U) where:
• C is a traced symmetric monoidal category
• T : C −→ C is a traced symmetric monoidal functor with the following retractions

(which are monoidal natural transformations):
1. e : TT ◁ T : e′ (Comultiplication)
2. d : Id◁ T : d′ (Dereliction)
3. c : T ⊗ T ◁ T : c′ (Contraction)
4. w : KI ◁ T : w′ (Weakening), where KI is the constant I functor.

We apply the GoI (or Int) construction to C to get a compact closed category G(C). We
can define ! on G(C) using the functor T .

Because the monoidal comonadic structure of T holds only “up to retractions”, we get only
a “weak linear category”, in which the naturality requirements are weakened to pointwise
naturality, i.e. with respect to arrows I −→ A.

This matches the idea that in combinatory logic, in general λ-equations hold only for
closed terms.

16 / 23

GoI situations
A GoI Situation is a triple (C, T, U) where:
• C is a traced symmetric monoidal category
• T : C −→ C is a traced symmetric monoidal functor with the following retractions

(which are monoidal natural transformations):
1. e : TT ◁ T : e′ (Comultiplication)
2. d : Id◁ T : d′ (Dereliction)
3. c : T ⊗ T ◁ T : c′ (Contraction)
4. w : KI ◁ T : w′ (Weakening), where KI is the constant I functor.

We apply the GoI (or Int) construction to C to get a compact closed category G(C). We
can define ! on G(C) using the functor T .

Because the monoidal comonadic structure of T holds only “up to retractions”, we get only
a “weak linear category”, in which the naturality requirements are weakened to pointwise
naturality, i.e. with respect to arrows I −→ A.

This matches the idea that in combinatory logic, in general λ-equations hold only for
closed terms.

16 / 23

Completing the construction
We then show that weak linear categories give rise to linear combinatory algebras.
To get a type-free model, we assume a “reflexive object” U with retractions U ⊗ U ◁ U ,
I ◁ U , TU ◁ U .

GoI Situationww� construct G(C)

Weak Linear Categoryww� take G(C)(I, U)

Linear Combinatory Algebraww� by standardization

Combinatory Algebra
17 / 23

Application pictorially
This is just a special case of composition:

? ?

g

? ?

f

18 / 23

The I combinator

? ?

? ?

Q
Q
Q

�
�

�

x
=

?
x

?
I • x = x

19 / 23

The B combinator

z y x

J
J
J

J
J
J

J
J
J

? ? ? ? ? ?

? ? ? ? ? ?

z

y

x
? ?

? ??

?

B · x · y · z = x · (y · z)

20 / 23

The W combinator

Wx!y = x!y!y

Hilbert Hotelling:
p : N× Pos

∼=−→ Pos

Translation between dialects

W

���
���

���
���

HHH
HHH

HHH
HHH

J
J

JJ

? ? ? ? ? ?

!y︷ ︸︸ ︷ x︷ ︸︸ ︷
? ? ? ? ? ?

(l.i, n) (r.j,m)

(i, n) (j,m)

.

.

21 / 23

Further Developments
• Phil and Esfan wrote a further series of papers on GoI. Topics include: typed GoI,

unique decomposition categories, partial traces. Tutorial in New Structures in Physics
(2010).

• Peter Hines has found many fascinating connections of the Hilbert hotel aspects, e.g.
to the Thompson group, strictification of coherence, the Collatz conjecture, etc.

• Mark Lawson has studied algebraic aspects.
• Naohiko Hoshino, Ichiro Hasuo and Koko Muroya have studied extensions such as

higher-order quantum GoI and memoryful GoI.
• Kuko Muroya and Dan Ghica developed a dynamic GoI.
• Carsten Furhmann and David Pym developed a categorical model of Classical logic

using GoI ideas.
• I gave a very concrete account of GoI as the basis for a structural approach to

reversible computation. This shows that one can build a combinatory algebra of
partial involutions (graph matchings) in a very simple fashion.

• An interesting question arising from this work has been answered in recent work by
Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, Marina Lenisa, and Ivan
Scagnetto.

22 / 23

23 / 23

