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From Sequent Calculus to Deep Inference



Multiplicative Linear Logic

a⊥ = a a⊥ = a (P` Q)⊥ = P⊥⊗ Q⊥ (P⊗ Q)⊥ = P⊥` Q⊥

Sequent Calculus

⊢ Γ, P, Q
⊢ Γ, P ` Q ` ⊢ Γ, P ⊢ ∆, Q

⊢ Γ, P⊗ Q ⊗
⊢ P, P⊥

Ax

⊢ Γ, P ⊢ ∆, P⊥

⊢ Γ, ∆
Cut

⊢ a, a Ax-Atom
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Deep Inference

The ideas:
1. Replace sequents with structures
2. Use ⊗ to combine multiple premises
3. Allow inference rules to be applied to any

substructure



Structures

P, Q ::= a | a | P⊗ Q | P ` Q | I

where (⊗, I) and (`, I) are commutative monoids.



⊢ Γ, P, Q
⊢ Γ, P ` Q ⇝

Γ ` P ` Q
Γ ` P ` Q

⊢ Γ, P ⊢ ∆, Q
⊢ Γ, ∆, P⊗ Q ⇝

(Γ ` P)⊗ (∆ ` Q)
Γ ` ∆ ` (P⊗ Q)

⊢ P, P⊥ ⇝
I

P ` P⊥

⊢ Γ, P ⊢ ∆, P⊥

⊢ Γ, ∆ ⇝
(Γ ` P)⊗ (∆ ` P⊥)

Γ ` ∆



(Γ ` P)⊗ (∆ ` Q)
Γ ` ∆ ` (P⊗ Q) ⇝

(P ` R)⊗ Q)
(P⊗ Q) ` R

I
P ` P⊥

(Γ ` P)⊗ (∆ ` P⊥)
Γ ` ∆ ⇝

P⊗ P⊥

I



Deep Inference as inference rules

C[(P ` R)⊗ Q]
C[(P⊗ Q) ` R] switch

C[I]
C[P ` P⊥]

ax
C[P⊗ P⊥]

C[I] cut



Deep Inference as a rewrite system

(P⊗ Q) ` R −→ (P ` R)⊗ Q
P ` P⊥ −→ I
I −→ P⊗ P⊥

P −→ Q
C[P] −→ C[Q]

A derivation of P from Q: P −→∗ Q

A proof of P: P −→∗ I



Normal proofs

(P⊗ Q) ` R −→n (P ` R)⊗ Q
a ` a −→n I

P −→n Q
C[P] −→n C[Q]

A normal proof of P: P −→∗
n I

Generalised Cut elimination: if P −→∗ I then P −→∗
n I



Normal proofs
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BV Basic System Virtual (Guglielmi, 2002/2007)

Structures

P, Q ::= a | a | P⊗ Q | P ` Q | P◁ Q | I

where (⊗, I) and (`, I) are commutative monoids, and
(◁, I) is a monoid.

Duality

a⊥ = a a⊥ = a (P⊗ Q)⊥ = P⊥ ` Q⊥

(P ` Q)⊥ = P⊥ ⊗ Q⊥ (P◁ Q)⊥ = P⊥ ◁ Q⊥ I⊥ = I



BV as rewrite rules

(P⊗ Q) ` R −→ (P ` R)⊗ Q
(P◁ Q) ` (R◁ S) −→ (P ` R)◁ (Q ` S)
(P⊗ Q)◁ (R⊗ S) −→ (P◁ R)⊗ (Q◁ S)
P ` P⊥ −→ I
I −→ P⊗ P⊥



Example

(a◁ b)⊸ (a ` b)
= ((a◁ b) ` a) ` b
= ((a◁ b) ` (a◁ I)) ` b→ ((a ` a)◁ (b ` I)) ` b→ (I◁ (b ` I)) ` b
= b ` b→ I



The need for Deep Inference (Tiu, 2006)

No “shallow” sequent calculus.



MAV Multiplicative Additive System Virtual
(Horne, 2015)

Structures
P, Q ::= a | a | P⊗ Q | P ` Q | P◁ Q | P & Q | P⊗ Q | I

where (⊗, I) and (`, I) are commutative monoids, and
(◁, I) is a monoid.
Duality

a⊥ = a a⊥ = a (P⊗ Q)⊥ = P⊥ ` Q⊥

(P ` Q)⊥ = P⊥ ⊗ Q⊥ (P◁ Q)⊥ = P⊥ ◁ Q⊥

(P & Q)⊥ = P⊥ ⊕ Q⊥ (P⊕ Q)⊥ = P⊥ & Q⊥ I⊥ = I



MAV as rewrite rules (normal rules only)

(P⊗ Q) ` R −→ (P ` R)⊗ Q
(P◁ Q) ` (R◁ S) −→ (P ` R)◁ (Q ` S)
P ` P⊥ −→ I
I & I −→ I
P⊕ Q −→ P
P⊕ Q −→ Q
(P & Q) ` R −→ (P ` R) & (Q ` R)
(P◁ Q) & (R◁ S) −→ (P & R)◁ (Q & S)



Proving Cut-elimination

Syntactic proof with key splitting lemma
(Guglielmi, 2007)

If C[P` Q] −→∗ I, then exist S1, S2 such that for all R:
1. C[R] −→∗ R⊗ (S1 ` S2)
2. P ` S1 −→∗ I
3. Q ` S2 −→∗ I
Similarly for P⊗ Q.

Long syntactic proof. Subsequently extended by Horne
for MAV and Guglielmi and Straßburger for
BV+exponentials (NEL).



Semantic Cut-elimination / Normalisation by Evaluation

1. Make a poset A from cut-free proofs
P ⊑ Q iff P −→∗

n Q
2. Complete A to Â, a model of the whole system with

an order embedding η : A → Â
3. such that JPK ⊑ ¬η(P)

Then for a proof P −→∗ I:
1. Interpret as I ⊑ JPK in Â (soundness)
2. So ¬η(I) ⊑ ¬η(P) (properties of η)
3. So η(P) ⊑ η(I) (contravariance of ¬)
4. So P −→∗

n I (order embedding)



Okada’s Semantic Cut-elimination Proof (Okada, 1999)

Okada’s construction: use the phase semantics.

1. (M, ·, ϵ) a commutative monoid, ⊥ ⊆ M is the “pole”
2. α ⊆ M are pre-facts
3. Define M⊥ = {x | ∀x ∈ M. x · y ∈ ⊥}.
4. Facts are pre-facts M s.t. M⊥⊥ = M
5. Facts ordered by inclusion form a model of MALL.

Okada: let M be the monoid of cut-free provable
sequents...deduce cut-elimination property.



Why not adapt Okada’s proof?

To handle P◁ Q we could try:
1. Let (M, ·, ϵ) be a partially ordered monoid
2. Assume another monoid structure (▷, ϵ) with the

right relationship with (·, ϵ) (duoidal).
3. Take the lattice of facts again.

But: we don’t get a self-dual ▷ on facts. We get two
distinct but dual operators. Not a model of BV or MAV.
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Semantics of MAV



∗-autonomous posets

A ∗-autonomous partial order is a structure
(A,≤,⊗, I,¬) where:
1. (⊗, I) is a pomonoid on (A,≤)

2. ¬ : Aop → A is anti-monotone and involutive
3. x⊗ y ≤ ¬z iff x ≤ ¬(y⊗ z)

∗-autonomous partial order satisfies mix if ¬I = I



Duoidal monoids

A pomonoid (•, i) is duoidal over another pomonoid
(◁, j) on a partial order (A,≤) if the following
inequalities hold:
1. (w◁ x) • (y◁ z) ≤ (w • y)◁ (x • z)
2. j • j ≤ j
3. i ≤ i◁ i
4. i ≤ j

▶ If i = j, then last three are automatic
▶ If • is a join or ◁ is a meet, then all are

automatic

(Aguiar and Mahajan, 2010)
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Algebraic Models of MAV

An MAV-algebra is a structure (A,≤,⊗,◁, I,¬) s.t.:
1. (A,≤,⊗, I,¬) is ∗-autonomous and satisfies mix.
2. (A,≤,◁, I) is a pomonoid.
3. ◁ is self dual: ¬(x◁ y) = (¬x)◁ (¬y).
4. (⊗, I) is duoidal over (◁, I).
5. (A,≤) has binary meets, which we write as x & y.



Let (A,≤,⊗,◁, I,¬) be a MAV-algebra.
1. There is another commutative pomonoid structure

(`, I) on (A,≤), defined as x ` y = ¬(¬x⊗ ¬y).
2. (⊗, I) and (`, I) are linearly distributive:

x⊗ (y ` z) ≤ (x⊗ y) ` z
3. (A,≤) has binary joins, given by x⊕ y = ¬(¬x & ¬y)
4. ⊕ distributes over ⊗: x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z)
5. & distributes over `: (x ` z) & (y ` z) = (x & y) ` z
6. ◁ duoidal over `: (w` x)◁ (y` z) ≤ (w◁ y)` (x◁ z)
7. ◁ duoidal over &: (w& x)◁ (y& z) ≤ (w◁ y) & (x◁ z)
8. ⊕ duoidal over ◁: (w◁ x)⊕ (y◁ z) ≤ (x⊕ y)◁ (x⊕ z)



Interpretation and Soundness

Let (A,≤,⊗,◁, I,¬) be a MAV-algebra.

Assume V(a) ∈ A for each atom a.

Interpret JP⊗ QK as JPK ⊗ JQK and so on.

Lemma (Duality): JP⊥K = ¬JPK
Thm (Soundness): P −→∗ I implies I ≤ JPK.



MAV frames



An MAV-frame is a structure (F,≤,`,◁, i,+) where:
1. (F,≤) is a partial order
2. (F,≤,`, i) is a commutative pomonoid
3. (F,≤,◁, i) is a pomonoid
4. + is a binary monotone function
Satisfying:
1. (w◁ x) ` (y◁ z) ≤ (w ` y)◁ (x ` z)
2. (x+ y) ` z ≤ (x ` z) + (y ` z)
3. (w◁ x) + (y◁ z) ≤ (w+ y)◁ (x+ z)
4. i+ i ≤ i

Two duoidal relationships and a distributivity law.



A process algebra reading

Change ` to ∥, ◁ to ;, and ≤ to −→:

1. (w; x) ∥ (y; z) −→ (w ∥ y); (x ∥ z)
2. (x+ y) ∥ z −→ (x ∥ z) + (y ∥ z)
3. (w; x) + (y; z) −→ (w+ y); (x+ z)
4. i+ i −→ i

A bit like a CCS-style process algebra with sequencing
or Concurrent Kleene Algebra, Hoare et al. 2011



Normal derivations as an MAV frame

Normal proofs
P −→∗

n Q
form an MAV frame with structures as the elements,
ordered by −→∗

n. Use P & Q for P+ Q.

Ignores the ⊗, ⊕ part of the structure.



From MAV frames to MAV algebras



Lower Sets

Let Â be lower subsets of A:

F ∈ Â ⇔ ∀x, y. x ∈ F∧ y ≤ x ⇒ y ∈ F

Ordered by subset inclusion.
Embedding: η : A → Â; η(x) = {y | y ≤ x}.

1. Â has meets and joins
2. For any monoid (•, i), define (Day, 1970)

F •̂ G = {z | z ≤ x • y, x ∈ F, y ∈ G} î = η(i)
residuated and η(x • y) = η(x) •̂η(y).

3. If (•, i) is duoidal over (◁, j) in A,
then (•̂, î) is duoidal over (◁̂, ĵ) in Â
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+-closed Lower Sets

A lower set F is +-closed if

∀x, y. x ∈ F∧ y ∈ F ⇒ x+ y ∈ F

+-closed lower sets Â+, ordered by inclusion.

There are functions:
▶ U : Â+ → Â forgetful
▶ α : Â → Â+ close

such that α(UF) = F and F ⊆ α(UF).

Embedding η+ = α ◦ η : A → Â+.
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Chu construction (Barr, Chu, 1979)

Let (A, •,→,∧) be a residuated ∧-pomonoid, k ∈ A

Define Chu(A, k) as:
▶ Elements (a+, a−) ∈ A× A such that a+ • a− ≤ k.
▶ (a+, a−) ⊑ (b+, b−) when a+ ≤ b+ and b− ≤ a−.

Chu(A, k) is then ∗-autonomous, with ¬(a+, a−) = (a−, a+).

If A has joins, then Chu(A, k) has meets and joins:

(a+, a−) ⊔ (b+, b−) = (a+ ∧ b+, a− ∨ b−)



Self-dual operators on Chu(A, k)

If we have (◁, j) on A such that:
1. (•, i) is duoidal over (◁, j);
2. k◁ k ≤ k;
3. j ≤ k
then

(a+, a−)◁ (b+, b−) = (a+ ◁ b+, a− ◁ b−) J = (j, j)

is a self dual monoid on Chu(A, k).

Moreover, (⊗, I) is duoidal over (◁, J).



Putting it all together

If (F,≤,`,◁, i,+) is an MAV-frame,
then Chu(F̂+, î+) is an MAV-algebra,
with an order embedding η : F → Chu(F̂+, î+).

In particular, if F is the MAV frame of normal proofs,
then for all structures P,

JPK ⊑ ¬η(P)

So we can apply the recipe to deduce that all MAV
proofs can be normalised.
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Frame semantics of MAV

As a corollary, MAV is sound and complete for a
semantics in MAV frames:

P −→∗ I
iff

for all MAV frames A. I ⊑ JPK in Chu(Â+, I)



Extensions

Technique is adaptable:
1. Scales down to BV
2. MAUV: MAV with additive units ⊤ and 0.
3. NEL (Guglielmi and Straßburger, 2011) : BV with

exponentials.



Summary
1. Semantics proof of Cut-elimination for MAV
2. ... and BV, MAUV, and NEL
3. constructed from modular well-known components.
4. Entire development has been formalised in Agda

and is executable so can actually normalise proofs

Future work
1. MAUVE, BI, Modal Logics
2. Fixpoints, incl. Kleene Star
3. Proof-relevant semantics, categorify everything
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