Copy-composition for probabilistic graphical models

Toby St Clere Smithe

VERSES Research & Topos Institute

イロト イ押 トイヨ トイヨ トー

 $0/24$

 Ω

G

2024 June 17

Copy-composition?

Sometimes, we want composition to "remember the intermediate object":

K ロ メ イ 団 メ イ ヨ メ ス ヨ メ ニ ヨ QQQ 1 / 24

Copy-composition in probabilistic modelling

Often joint distributions are of more interest than their marginals.

Compose 'prior' $\pi: 1 \longrightarrow X$ and 'likelihood' $c: X \longrightarrow Y$ to yield

Similarly, statistical loss functions are only 'copy-compositional'. (This was the content of my talk last year.)

Overview of this talk

1 [Introduction](#page-1-0)

2 [Composing directed models](#page-4-0)

3 [Composing undirected models](#page-13-0)

4 [Concluding remarks](#page-26-0)

Bayesian networks

A Bayesian network is a distribution that factorizes over a directed graph (nodes are random variables; edges represent conditional dependence).

Fong [\[5,](#page-27-0) Theorem 4.5]: any Bayesian network can be written as the composite of morphisms of the form

Note the copiers!

.

Pre-composing with copy yields the graph

Given a function $f: X \to Y$, its graph is the function

graph (f) is a section of the projection $X \times Y \to X$.

Alternatively, a 'term' of type $X \times Y$ in 'context' X.

We can tell this story in a stochastic setting.

Tensoring with identity wires is pullback

To obtain this function

pull graph (f) back along the projection $Z \times X \rightarrow X$.

Alternatively, extend its context by Z.

We can do this, too: but we'll need a (bi)fibration.

Kernels, fibrewise

Define a fibration K over Meas: a "stochastic codomain fibration". Objects of fibre \mathcal{K}_B are measurable functions into B. Morphisms $k: (E, \pi) \leadsto (E', \pi')$ are s-finite kernels¹ "fibrewise over B ": i.e., $E \stackrel{k}{\leadsto} E' \stackrel{\delta_{\pi'}}{\leadsto} B = E \stackrel{\delta_{\pi}}{\leadsto} B$.

Suppose $b: J \rightarrow B$ measurable. Let $p[b]$ be the pullback object:

$$
p[b] \xrightarrow{\pi_E} E
$$

$$
b^* p \downarrow \qquad \downarrow p
$$

$$
J \xrightarrow{\qquad b} B
$$

Then k restricts to a kernel 'fibrewise', $k[b]:p[b]\leadsto p'[b].$ (This is Prop. 2.8 in the paper.)

 1 An s-finite kernel $k: E \to E'$ is a function $E \times \Sigma_{E'} \to \mathbb{R}_+$, measurable in the 1^st and a measure in the 2nd argument, satisfying a finiteness condition[.](#page-6-0) \longleftrightarrow and \longleftrightarrow and \longleftrightarrow and \longleftrightarrow and \circ

Bifibration structure

Substitution. $\Delta_b : \mathcal{K}_B \to \mathcal{K}_J$ acts by pullback on objects, and by restriction on kernels, mapping k to $k[b]$.

Dependent sum. $\Sigma_b : \mathcal{K}_J \to \mathcal{K}_B$ acts by post-composition on objects, mapping $E\stackrel{p}{\to}J$ to $E\stackrel{p}{\to}J\stackrel{b}{\to}B;$ and as identity on kernels. $\Sigma\dashv\Delta.$

Beck-Chevalley. Given pullback in Meas

we have $\Sigma_{\rho} \Delta_{\pi} \cong \Delta_q \Sigma_p$, naturally. (This follows from the situation in Meas⁻¹.)

Copy-composition is pull-push

Can composing graph $(f) : X \to X \times Y$ and graph $(g) : Y \to Y \times Z$ yield

Yes, by 'pull-push'! The diagram represents a section $X \to X \times Y \times Z$. It may be obtained as $\Sigma_{\pi_{X}^{XY}}$ $\Delta_{\pi_{Y}^{XY}}$ $\left(\textsf{graph}(g) \right) \circ \textsf{graph}(f)$... ` Ï.

> **K ロ メ イ 団 メ イ ヨ メ ス ヨ メ ニ ヨ** 9 / 24

Copy-composition is pull-push

We have decorated spans with sections (of their left legs)!

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end$ つひひ 10 / 24

A decorated span (double) category

We can formalize this via a double Grothendieck construction. following Patterson [\[7\]](#page-28-0) and Cruttwell, Lambert, Pronk, and Szyld [\[2\]](#page-27-1).

Given a (B-C) bifibration $\pi : \mathcal{E} \to \mathcal{B}$ with a section ι , we obtain a double fibration $\mathbb S$ over $\mathbb S\mathbf{pan}(\mathcal B)_{pb}$. 2

Spans in B are decorated by left-leg sections in \mathcal{E} , via ι .

Horizontal composition is pull-push on the decorations.

Beck-Chevalley needed for associativity.

Details in the paper!

²2-cells are Cartesian natural transformations, needed for horizontal composition of squares.

イロメ イ団メ イミメ イモメー 差

Composing Bayesian networks

sfKrn embeds into $\mathbb S$ (lax, horiz.), mapping a kernel to its graph.

Let σ be the image of $X_i \mid \text{pa}(i)$ under this embedding, Let σ be the image of $X_i \mid \text{pa}(\imath)$ under this embeddireand let p be the projection $\prod_{j < i} X_j \to \prod_{j \in \text{pa}(\imath)} X_j.$

Then Fong's morphism is $\sigma_{\leq i} = \Delta_p \sigma$.

More generally: Bayesian networks with depende[nt](#page-11-0) [ty](#page-13-0)[p](#page-11-0)[es.](#page-12-0)[.](#page-10-0).

From directed to undirected models

13 / 24

 Ω

G

メロメ メタメ メモメ メモメー

1 [Introduction](#page-1-0)

2 [Composing directed models](#page-4-0)

3 [Composing undirected models](#page-13-0)

4 [Concluding remarks](#page-26-0)

Factor graphs

In the 'bipartite' style of Wainwright and Jordan [\[8,](#page-28-1) §2.1.3]:

 $f(a, b, c, d, e) = f_0(a, b) f_1(a, c) f_2(b, c, d) f_3(d, e) f_4(e) f_5(d)$ $f: A \times B \times C \times D \times E \rightarrow \mathbb{R}_{+}$

Each factor may itself contain a factor graph...

Factors, costates, and copy-composition

In sfKrn, measurable functions $X \to \mathbb{R}_+$ are kernels into 1.

This is a common pattern: factors are 'predicates'.

In copy-discard cat.s³, these are costates: morphisms into the monoidal unit.

And we can copy-compose them via

A classic case of decorated cospans ...

³Such as: categories of modules; weakly [\[6\]](#page-28-2) / partial [\[4\]](#page-27-2) Markov categories; partial effectuses [\[1\]](#page-27-3) ... イロメ イ団メ イミメ イモメー 差

We'll use the full double categorical machinery this time.

Factors' domains are finite tensors of objects. So decorate finite sets X with type information, 'interfaces' $\chi: X \to \mathcal{C}_0$.

We'll use the full double categorical machinery this time.

Factors' domains are finite tensors of objects. So decorate finite sets X with type information, 'interfaces' $\chi: X \to \mathcal{C}_0$.

A cospan encodes those objects which are exposed for composition.

We'll use the full double categorical machinery this time.

Factors' domains are finite tensors of objects. So decorate finite sets X with type information, 'interfaces' $\chi: X \to \mathcal{C}_0$.

A cospan encodes those objects which are exposed for composition.

Vertical morphisms in $\mathbb{C}ospan(\mathbf{FinSet})$ are functions; decorate these with comonoid homomorphisms (so they can be copied!).

We'll use the full double categorical machinery this time.

Factors' domains are finite tensors of objects. So decorate finite sets X with type information, 'interfaces' $\chi: X \to \mathcal{C}_0$.

A cospan encodes those objects which are exposed for composition.

Vertical morphisms in $\mathbb{C}ospan(\mathbf{FinSet})$ are functions; decorate these with comonoid homomorphisms (so they can be copied!).

Decorate apices X with interfaces χ and factors $f: \chi^{\otimes} \leadsto I.$ Formally, this is again a Grothendieck construction (factors over interfaces).

We'll use the full double categorical machinery this time.

Factors' domains are finite tensors of objects. So decorate finite sets X with type information, 'interfaces' $\chi: X \to \mathcal{C}_0$.

A cospan encodes those objects which are exposed for composition.

Vertical morphisms in $\mathbb{C}ospan(\mathbf{FinSet})$ are functions; decorate these with comonoid homomorphisms (so they can be copied!).

Decorate apices X with interfaces χ and factors $f: \chi^{\otimes} \leadsto I.$ Formally, this is again a Grothendieck construction (factors over interfaces).

Decorations on squares obtain accordingly: briefly, morphisms in $\mathcal C$ that are deterministic over exposed interfaces.

KORK@RKERKER E 1990

Morphisms of factors: deterministic if exposed

Suppose β transforms $f \to f'$ and $g \to g'$ as in

and we want to compose along β , over cospans like

$$
\{A\} \to \{A, B'\} \leftarrow \{B'\} \to \{B', C\} \leftarrow \{C\} .
$$

Morphisms of factors: deterministic if exposed

Naturality of copy-composition requires

hence β must be a homomorphism.

But we can have unexposed non-deterministic transformations, e.g. marginalization (compose with a state).

Double-categorical undirected wiring diagrams

Absent the vertical morphisms, this is an undirected wiring diagram algebra.

Suggests a graphical calculus, now with 2-cells.

'Spiders' represent loci of composition. f, h transform to f', h' . φ deterministic, ψ not.

Double-categorical undirected wiring diagrams

Can pull deterministic transformations outside the bubble

(exposing the corresponding locus)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end$

Double-categorical undirected wiring diagrams

The factor graph we started with:

Very similar to those of de Vries and Friston [\[3\]](#page-27-4) (& colleagues).

But this calculus not yet formalized ...

Review & some future directions

We saw two cases of copy-composition in probabilistic modelling: one directed, one undirected.

Both were formalized by a Grothendieck construction, associating models ('terms') to interfaces ('types').

Might hope to find directed models amongst undirected ones, as functions are amongst relations.

But, for that, these constructions aren't quite right.

And it would be nice to formalize the 2-d calculus for UWDs.

Finally: is FG useful for compositional belief propagation?

Thanksl

References I

- 1. Cho, K., Jacobs, B., Westerbaan, B., and Westerbaan, A.: "An Introduction to Effectus Theory"
- 2. Cruttwell, G., Lambert, M., Pronk, D., and Szyld, M.: Double Fibrations. (2022). arXiv: [2205.15240 \[math\]](https://arxiv.org/abs/2205.15240). <http://arxiv.org/abs/2205.15240> (visited on 03/20/2023). preprint
- 3. De Vries, B., and Friston, K.J.: A Factor Graph Description of Deep Temporal Active Inference. Frontiers in Computational Neuroscience 11 (2017). DOI: [10.3389/fncom.2017.00095](https://doi.org/10.3389/fncom.2017.00095)
- 4. Di Lavore, E., and Román, M.: Evidential Decision Theory via Partial Markov Categories. (2023). arXiv: [2301.12989 \[cs, math\]](https://arxiv.org/abs/2301.12989). <http://arxiv.org/abs/2301.12989> (visited on 04/20/2023). preprint
- 5. Fong, B.: Causal Theories: A Categorical Perspective on Bayesian Networks. University of Oxford (2013-01-26, 2013)

References II

- 6. Fritz, T., Gadducci, F., Perrone, P., and Trotta, D.: Weakly Markov Categories and Weakly Affine Monads. LIPIcs, Volume 270, CALCO 2023 270, 16:1–16:17 (2023). DOI: [10.4230/LIPIcs.CALCO.2023.16](https://doi.org/10.4230/LIPIcs.CALCO.2023.16). arXiv: [2303.14049 \[cs, math\]](https://arxiv.org/abs/2303.14049). <http://arxiv.org/abs/2303.14049> (visited on 06/10/2024)
- 7. Patterson, E.: Structured and Decorated Cospans from the Viewpoint of Double Category Theory. (2023). arXiv: [2304.00447 \[math\]](https://arxiv.org/abs/2304.00447). <http://arxiv.org/abs/2304.00447> (visited on 04/20/2023). preprint
- 8. Wainwright, M.J., and Jordan, M.I.: Graphical Models, Exponential Families, and Variational **Inference.** Foundations and Trends \overline{R} in Machine Learning $1(1-2)$, 1-305 (2007). DOI: [10.1561/2200000001](https://doi.org/10.1561/2200000001). <http://dx.doi.org/10.1561/2200000001>