CaTT contexts are finite computads

Thibaut Benjamin, loannis Markakis, Chiara Sarti
MFPS — June 21, 2024

w-categories: why?

e |dentity types in MLTT

w-categories: why?

e |dentity types in MLTT

e Proof relevant rewriting

w-categories: why?

e |dentity types in MLTT
e Proof relevant rewriting

e Directed homotopy and concurrent programming

w-categories: what?

o A globular set

=
&

w-categories: what?

o A globular set

==

e With compositions operations

1 for 1-cells, 2 (horizontal/vertical) for 2-cells, 3 for 3-cells ...

w-categories: what?

o A globular set

==

e With compositions operations

1 for 1-cells, 2 (horizontal /vertical) for 2-cells, 3 for 3-cells . ..

e Satisfying various axioms...
associativity, unitality, exchange rules,. ..

w-categories: what?

o A globular set

==

e With compositions operations

1 for 1-cells, 2 (horizontal /vertical) for 2-cells, 3 for 3-cells . ..

e Satisfying various axioms...
associativity, unitality, exchange rules,. ..

o Weakly!

Up to a higher cell: witnessing an equivalence

w-categories: how?

catt computads
Finster, Mimram description by DFMRV !
dependent type theory inductively defined

!Dean, Finster, Markakis, Reutter, Vicary

w-categories: how?

catt computads
Finster, Mimram description by DFMRV !
dependent type theory inductively defined

B., Finster, Mimram

coherator
Grothendieck, Maltsiniotis

!Dean, Finster, Markakis, Reutter, Vicary

w-categories: how?

catt computads
Finster, Mimram description by DFMRV !
dependent type theory inductively defined
B., Finster, Mimram DFMRV
coherator globular monad
Grothendieck, Maltsiniotis Batanin, Leinster

!Dean, Finster, Markakis, Reutter, Vicary

w-categories: how?

catt computads
Finster, Mimram description by DFMRV !
dependent type theory inductively defined
B., Finster, Mimram DFMRV
coherator globular monad
Grothendieck, Maltsiniotis Ara, Bourke Batanin, Leinster

!Dean, Finster, Markakis, Reutter, Vicary

w-categories: how?

catt computads
Finster, Mimram = & --------------——- s description by DFMRV !
dependent type theory inductively defined
B., Finster, Mimram DFMRV
coherator globular monad
Grothendieck, Maltsiniotis Ara, Bourke Batanin, Leinster

!Dean, Finster, Markakis, Reutter, Vicary

Presentation of CaTT

Types and globular sets

CaTT has 2 type constructors:

M= M-u:A rM-v:A

MEx MFu—av

Types and globular sets

CaTT has 2 type constructors:

([Nu: A Nv:A

[* M-u—av

e Idea: The arrow types represent abstract directed equality.

Types and globular sets

CaTT has 2 type constructors:

([Nu: A Nv:A

M=% l-u—av

e Idea: The arrow types represent abstract directed equality.
e Structure: Contexts using these types are globular sets

¢

(x: %)y :%)(f:x—=y)g:x—x) X —— y

Pasting schemes

o ldea: Pasting schemes are diagrams which can be composed in an essentially

unique way

Pasting schemes

o ldea: Pasting schemes are diagrams which can be composed in an essentially

unique way

e Construction: freely glue cells onto free spaces

————(START)
(x o) Fps x 1%

Pasting schemes

o ldea: Pasting schemes are diagrams which can be composed in an essentially

unique way

e Construction: freely glue cells onto free spaces

NFps x A
————(START) (EXT)
(x o) Fps x 1% Ny :Af:ix—=aybpfix—ay

Pasting schemes

o ldea: Pasting schemes are diagrams which can be composed in an essentially

unique way

e Construction: freely glue cells onto free spaces

NFps x A
————(START) (EXT)
(x o) Fps x 1% Ny :Af:ix—=aybpfix—ay

Mbps fix—ay
syt A

(DROP)

Pasting schemes

o ldea: Pasting schemes are diagrams which can be composed in an essentially

unique way

e Construction: freely glue cells onto free spaces

NFps x A
————(START) (EXT)
(x o) Fps x 1% Ny :Af:ix—=aybpfix—ay
Mhps Fix— [Mps x @ %
- A y(DROP) — > (DPONE)

syt A I Fps

Pasting schemes : Example

(START)

(x 1) Fps x 1

Pasting schemes : Example

(START) (EXT)

(x:*x)(y:x)(f:ix—=y)bpsfix—y

Pasting schemes : Example

(START) (EXT) (EXT)

(x:x)(y:x)(f:x=y)(g:x—=y)a:f>g)Fpsa:f —¢

Pasting schemes : Example

(START) (EXT) (EXT) (DROP)

(x:x)(yix)(fix—=y)(g:ix—y)a:f—g)Fpsgix—)

Pasting schemes : Example

(START) (EXT) (EXT) (DROP) (EXT)

N, (x: %) (y:$)(f:x—=y)(g:x = y)a:f —g)
(h:x—y)b:g—>h)bFpsb:g—h

SN

Pasting schemes : Example

(START) (EXT) (EXT) (DROP) (EXT) (DROP)

\\lib/‘ (x: %) (y:*x)(f:x=>y)(g:x—y)a:f—g)
(h:x—=y)b:g—=h)bFph:x—y

SN

Pasting schemes : Example

(START) (EXT) (EXT) (DROP) (EXT) (DROP)

I (DROP)
x—lfbﬁy
\\h/\ (x:x)(y:x)(f:x—=y)(g:x—=y)a:f—g)

(h:x—=y)b:g—h)bFpsy:x

I
/ .

2 y

Pasting schemes : Example

(START) (EXT) (EXT) (DROP) (EXT) (DROP)

I . (DROP) (EXT)
X —lfbﬁ y — z
\\h/\ (x:x)(y:x)(f:x—=y)(g:x—=y)a:f—g)

(h:x—=y)b:g—=h)(z:x)(k:y = 2)Fpsk:y =z

I
/ N

2 y

k

Pasting schemes : Example

(START) (EXT) (EXT) (DROP) (EXT) (DROP)

TN . (pDrROP) (EXT) (DROP)
X *lfb*) y — Z
\\h/“ (x:%) (y:X)(f:x—=y)(g:x—=y)a:f—g)

(h:x—=y)b:g—=h)(z:x)(k:y = 2)Fpsz:%

SN
/ AN

X y z

Pasting schemes : Example

(START) (EXT) (EXT) (DROP) (EXT) (DROP)

STy . (DROP) (EXT) (DROP) (DONE)
X —lfba y —— z
e (x:%) (y:1)(f:x—=y) (g:x—=y)a:f—g)

(h:x—=y)b:g—=h)(z:x)(k:y = z) Fps

SN
/ AN

X y z

Term constructors: compositions and coherences

e ldea: Force every pasting scheme to have an essentially unique composite

Term constructors: compositions and coherences

e ldea: Force every pasting scheme to have an essentially unique composite

e Existence

Thps O THu:A O0Tkv:A Ab~y:T |Var(dT) = Var(u)U Var(A)
A+ compr , ,[7] - u[y] = v[7] Var(07T) = Var(v) U Var(A)

Term constructors: compositions and coherences

e ldea: Force every pasting scheme to have an essentially unique composite

e Existence

Thps O THu:A O0Tkv:A Ab~y:T |Var(dT) = Var(u)U Var(A)
A+ compr , ,[7] - u[y] = v[7] Var(07T) = Var(v) U Var(A)

e Essential uniqueness

T e NlFu:A FrFv:A AF~y:T Var(I") = Var(u) U Var(A)
A+ cohr yv[] = uly] = v[y] Var(I') = Var(v) U Var(A)

Implementation of CaTT

e A type checker for CaTT is available?.

*https://github.com/thibautbenjamin/catt

https://github.com/thibautbenjamin/catt

Implementation of CaTT

e A type checker for CaTT is available?.

e Proof-assistant for coherences in w-categories.
coh comp (x : *) (y : *x) (f: x > y) (z : *) (g y > 2) : x > z
coh id (x : *) : x -> x
coh unitl (x : *) (y : *) (f : x => y) : comp (id x) f -> £

*https://github.com/thibautbenjamin/catt

https://github.com/thibautbenjamin/catt

Implementation of CaTT

e A type checker for CaTT is available?.

e Proof-assistant for coherences in w-categories.

coh comp (x : *) (y : *x) (f: x > y) (z : *) (g y > 2) : x > z
coh id (x : *) : x -> x
coh unitl (x : *) (y : *) (f : x => y) : comp (id x) f -> £

e Includes proof automation and term synthesis.

*https://github.com/thibautbenjamin/catt

https://github.com/thibautbenjamin/catt

Presentation of computads

General Idea

Computads translate a the idea of freeness for higher categories.

General Idea

Computads translate a the idea of freeness for higher categories.

Xo 0-generators

General Idea

Computads translate a the idea of freeness for higher categories.

X1 1-generators

Xo 0-generators

General Idea

Computads translate a the idea of freeness for higher categories.

X1 1-generators
Xo 0-generators

General Idea

Computads translate a the idea of freeness for higher categories.

Xo 2-generators
X1 1-generators
Xo 0-generators

General Idea

Computads translate a the idea of freeness for higher categories.

Xo 2-generators
X1 — Celli(X<1) 1-generators
Xo 0-generators

General Idea

Computads translate a the idea of freeness for higher categories.

X3 3-generators
Xo 2-generators
X1 — Celli(X<1) 1-generators
Il

Xo 0-generators

General Idea

Computads translate a the idea of freeness for higher categories.

X3 3-generators

Xo — Cella(X<2) 2-generators
ll

X1 — Celli(X<1) 1-generators

Il

Xo 0-generators

General Idea

Computads translate a the idea of freeness for higher categories.

X3 : 3-generators

Xo — Cella(X<2) 2-generators
Il

X1 — Celli(X<1) 1-generators

I

Xo 0-generators

General Idea

Computads translate a the idea of freeness for higher categories.

X3 : 3-generators

Xo — Cella(X<2) 2-generators
X1 — Celli(X<1) 1-generators
Xo Cellp(Xo) 0-generators

Batanin trees and pasting schemes

NS e
<

10

Batanin trees and pasting schemes

N o

10

Batanin trees and pasting schemes

B = \/ . Pos(B) = .@.%.
N

10

Description of Cell,(X<,)

The sets Cell,(X<,) and the source and target maps are given by:

e var x where x € X,
s(var x) = s(x) t(var x) = t(x)

X3

Xo — Cella(X<2)

I

X; —— Celly(X<1)

Cellp(Xo)
11

Description of Cell,(X<,)

The sets Cell,(X<,) and the source and target maps are given by:

e var x where x € X,

s(var x) = s(x) t(var x) = t(x)
X3

X ol e coh(B,(u,v),v), where B is a Batanin tree,
2 ell2(X<2) u,v € Cell,_1(Pos B) satisfying conditions
u similar to CaTT, and ~ : Cell(Pos(B)) — X

X; —— Celly(X<1)

Cellp(Xo)
11

The category Comp of computads

e The category Comp
objects: computads
morphisms: f: X — Y = collection of maps 7,: X,, — Cell,(Y)
respecting source and target

12

The category Comp of computads

e The category Comp
objects: computads
morphisms: f: X — Y = collection of maps 7,: X,, — Cell,(Y)
respecting source and target

morphisms ~ substitutions

12

The category Comp of computads

e The category Comp
objects: computads
morphisms: f: X — Y = collection of maps 7,: X,, — Cell,(Y)
respecting source and target

morphisms ~ substitutions

e CwF structure on Comp®P:
types: pair of parallel cells in Cell(X)
terms: cells in Cell(X) with prescribed source/target
extension: adding new generator

12

From computads to w-categories

e The descriptions of computads comes with an associated monads on globular sets

13

From computads to w-categories

e The descriptions of computads comes with an associated monads on globular sets

e Algebras for this monad are weak w-categories

13

From computads to w-categories

e The descriptions of computads comes with an associated monads on globular sets
e Algebras for this monad are weak w-categories

e Every w-category is weakly equivalent to a computad

13

From computads to w-categories

e The descriptions of computads comes with an associated monads on globular sets

Algebras for this monad are weak w-categories

e Every w-category is weakly equivalent to a computad

Computads are the cofibrant objects.

13

Comparison result

Summary and comparison

CaTT

description of computads

Finite
Ordered
Structural induction
Pasting schemes
Named variables

Infinite
Unordered
Induction on dimension
Batanin trees
Unnamed elements

14

Summary and comparison

CaTT description of computads
Finite Infinite
Ordered Unordered
Structural induction | Induction on dimension
Pasting schemes Batanin trees
Named variables Unnamed elements

e Name of the elements: irrelevant with de Bruijn levels.

14

Summary and comparison

CaTT

description of computads

Finite
Ordered
Structural induction
Pasting schemes
Named variables

Infinite
Unordered
Induction on dimension
Batanin trees
Unnamed elements

e Name of the elements: irrelevant with de Bruijn levels.

e Pasting schemes and Batanin trees equivalent.

14

Contribution

Theorem (B., Markakis, Sarti)
There exists a fully faithful morphism of CwF from S¢,rr to Comp®P. Its essential

image is made of finite computads.

CaTT contexts are finite computads

15

Conclusion

o Weak w-categories admit many different definitions, using various tools: monads,
coherator, dependent type theory, inductive description of computads.

16

Conclusion

o Weak w-categories admit many different definitions, using various tools: monads,
coherator, dependent type theory, inductive description of computads.

e Network of connections, that we completed by showing that CaTT defines finite
computads.

16

Conclusion

o Weak w-categories admit many different definitions, using various tools: monads,
coherator, dependent type theory, inductive description of computads.

e Network of connections, that we completed by showing that CaTT defines finite
computads.

o Makes an explicit connection between algebras for the monad and models of the
dependent type theory.

16

	Presentation of CaTT
	Presentation of computads
	Comparison result

