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e Satisfying various axioms...
associativity, unitality, exchange rules,. ..

o Weakly!

Up to a higher cell: witnessing an equivalence



w-categories: how?

catt computads
Finster, Mimram description by DFMRV !
dependent type theory inductively defined

!Dean, Finster, Markakis, Reutter, Vicary



w-categories: how?

catt computads
Finster, Mimram description by DFMRV !
dependent type theory inductively defined

B., Finster, Mimram

coherator
Grothendieck, Maltsiniotis

!Dean, Finster, Markakis, Reutter, Vicary



w-categories: how?

catt computads
Finster, Mimram description by DFMRV !
dependent type theory inductively defined
B., Finster, Mimram DFMRV
coherator globular monad
Grothendieck, Maltsiniotis Batanin, Leinster

!Dean, Finster, Markakis, Reutter, Vicary



w-categories: how?

catt computads
Finster, Mimram description by DFMRV !
dependent type theory inductively defined
B., Finster, Mimram DFMRV
coherator globular monad
Grothendieck, Maltsiniotis Ara, Bourke Batanin, Leinster

!Dean, Finster, Markakis, Reutter, Vicary



w-categories: how?

catt computads
Finster, Mimram = & --------------——- s description by DFMRV !
dependent type theory inductively defined
B., Finster, Mimram DFMRV
coherator globular monad
Grothendieck, Maltsiniotis Ara, Bourke Batanin, Leinster

!Dean, Finster, Markakis, Reutter, Vicary



Presentation of CaTT



Types and globular sets

CaTT has 2 type constructors:

M= M-u:A rM-v:A

MEx MFu—av




Types and globular sets

CaTT has 2 type constructors:

([ Nu: A Nv:A

[ * M-u—av

e Idea: The arrow types represent abstract directed equality.



Types and globular sets

CaTT has 2 type constructors:

([ Nu: A Nv:A

M=% l-u—av

e Idea: The arrow types represent abstract directed equality.
e Structure: Contexts using these types are globular sets

¢

(x: %)y :%)(f:x—=y)g:x—x) X —— y
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Pasting schemes

o ldea: Pasting schemes are diagrams which can be composed in an essentially

unique way

e Construction: freely glue cells onto free spaces

NFps x A
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Pasting schemes : Example
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e ldea: Force every pasting scheme to have an essentially unique composite

e Existence

Thps O THu:A  O0Tkv:A  Ab~y:T  |Var(dT) = Var(u)U Var(A)
A+ compr , ,[7] - u[y] = v[7] Var(07T) = Var(v) U Var(A)

e Essential uniqueness

T e NlFu:A FrFv:A AF~y:T Var(I") = Var(u) U Var(A)
A+ cohr yv[] = uly] = v[y] Var(I') = Var(v) U Var(A)
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Implementation of CaTT

e A type checker for CaTT is available?.

e Proof-assistant for coherences in w-categories.

coh comp (x : *) (y : *x) (f: x > y) (z : *) (g y > 2) : x > z
coh id (x : *) : x -> x
coh unitl (x : *) (y : *) (f : x => y) : comp (id x) f -> £

e Includes proof automation and term synthesis.

*https://github.com/thibautbenjamin/catt
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General Idea

Computads translate a the idea of freeness for higher categories.

X3 : 3-generators

Xo — Cella(X<2) 2-generators
X1 — Celli(X<1) 1-generators
Xo Cellp(Xo) 0-generators
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Batanin trees and pasting schemes
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N
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Description of Cell,(X<,)

The sets Cell,(X<,) and the source and target maps are given by:

e var x where x € X,

s(var x) = s(x) t(var x) = t(x)
X3

X ol e coh(B,(u,v),v), where B is a Batanin tree,
2 ell2(X<2) u,v € Cell,_1(Pos B) satisfying conditions
u similar to CaTT, and ~ : Cell(Pos(B)) — X

X; —— Celly(X<1)

Cellp(Xo)
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The category Comp of computads

e The category Comp
objects: computads
morphisms: f: X — Y = collection of maps 7,: X,, — Cell,(Y)
respecting source and target

morphisms ~ substitutions

e CwF structure on Comp®P:
types: pair of parallel cells in Cell(X)
terms: cells in Cell(X) with prescribed source/target
extension: adding new generator
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From computads to w-categories

e The descriptions of computads comes with an associated monads on globular sets

Algebras for this monad are weak w-categories

e Every w-category is weakly equivalent to a computad

Computads are the cofibrant objects.
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Summary and comparison

CaTT

description of computads

Finite
Ordered
Structural induction
Pasting schemes
Named variables

Infinite
Unordered
Induction on dimension
Batanin trees
Unnamed elements

e Name of the elements: irrelevant with de Bruijn levels.

e Pasting schemes and Batanin trees equivalent.

14



Contribution

Theorem (B., Markakis, Sarti)
There exists a fully faithful morphism of CwF from S¢,rr to Comp®P. Its essential

image is made of finite computads.

CaTT contexts are finite computads
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Conclusion

o Weak w-categories admit many different definitions, using various tools: monads,
coherator, dependent type theory, inductive description of computads.

e Network of connections, that we completed by showing that CaTT defines finite
computads.

o Makes an explicit connection between algebras for the monad and models of the
dependent type theory.
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