CaTT contexts are finite computads

Thibaut Benjamin, Ioannis Markakis, Chiara Sarti

MFPS - June 21, 2024

• Identity types in MLTT

- Identity types in MLTT
- Proof relevant rewriting

- Identity types in MLTT
- Proof relevant rewriting
- Directed homotopy and concurrent programming

• A globular set

• A globular set

- With compositions operations
 - 1 for 1-cells, 2 (horizontal/vertical) for 2-cells, 3 for 3-cells . . .

• A globular set

- With compositions operations
 1 for 1-cells, 2 (horizontal/vertical) for 2-cells, 3 for 3-cells . . .
- Satisfying various axioms...
 associativity, unitality, exchange rules,...

A globular set

- With compositions operations
 1 for 1-cells, 2 (horizontal/vertical) for 2-cells, 3 for 3-cells . . .
- Satisfying various axioms...
 associativity, unitality, exchange rules,...
- Weakly!
 Up to a higher cell: witnessing an equivalence

catt

Finster, Mimram dependent type theory

computads

description by DFMRV ¹ inductively defined

¹Dean, Finster, Markakis, Reutter, Vicary

¹Dean, Finster, Markakis, Reutter, Vicary

computads description by DFMRV ¹ inductively defined

¹Dean, Finster, Markakis, Reutter, Vicary

¹Dean, Finster, Markakis, Reutter, Vicary

¹Dean, Finster, Markakis, Reutter, Vicary

Presentation of CaTT

Types and globular sets

CaTT has 2 type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star}$$

$$\frac{\Gamma \vdash u : A \qquad \Gamma \vdash v : A}{\Gamma \vdash u \to_A v}$$

Types and globular sets

CaTT has 2 type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash u : A \qquad \Gamma \vdash v : A}{\Gamma \vdash u \to_A v}$$

• Idea: The arrow types represent abstract directed equality.

Types and globular sets

CaTT has 2 type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash u : A \qquad \Gamma \vdash v : A}{\Gamma \vdash u \to_A v}$$

- Idea: The arrow types represent abstract directed equality.
- **Structure**: Contexts using these types are globular sets

$$(x:\star)(y:\star)(f:x\to y)(g:x\to x)$$
 $x\xrightarrow{f} y$

• Idea: Pasting schemes are diagrams which can be composed in an essentially unique way

- Idea: Pasting schemes are diagrams which can be composed in an essentially unique way
- Construction: freely glue cells onto free spaces

$$\frac{}{(x:\star)\vdash_{\mathsf{ps}}x:\star}(\mathsf{START})$$

- Idea: Pasting schemes are diagrams which can be composed in an essentially unique way
- Construction: freely glue cells onto free spaces

$$\frac{\Gamma \vdash_{\mathsf{ps}} x : A}{(x : \star) \vdash_{\mathsf{ps}} x : \star} (\mathsf{START}) \qquad \frac{\Gamma \vdash_{\mathsf{ps}} x : A}{\Gamma, y : A, f : x \to_{A} y \vdash_{\mathsf{ps}} f : x \to_{A} y} (\mathsf{EXT})$$

- Idea: Pasting schemes are diagrams which can be composed in an essentially unique way
- Construction: freely glue cells onto free spaces

$$\frac{\Gamma \vdash_{\mathsf{ps}} x : A}{(x : \star) \vdash_{\mathsf{ps}} x : \star} (\text{START}) \qquad \frac{\Gamma \vdash_{\mathsf{ps}} x : A}{\Gamma, y : A, f : x \to_{A} y \vdash_{\mathsf{ps}} f : x \to_{A} y} (\text{EXT})$$

$$\frac{\Gamma \vdash_{\mathsf{ps}} f : x \to_{A} y}{\Gamma \vdash_{\mathsf{ps}} y : A} (\text{DROP})$$

- Idea: Pasting schemes are diagrams which can be composed in an essentially unique way
- Construction: freely glue cells onto free spaces

$$\frac{\Gamma \vdash_{\mathsf{ps}} x : A}{(x : \star) \vdash_{\mathsf{ps}} x : \star} (\text{START}) \qquad \frac{\Gamma \vdash_{\mathsf{ps}} x : A}{\Gamma, y : A, f : x \to_{A} y \vdash_{\mathsf{ps}} f : x \to_{A} y} (\text{EXT})$$

$$\frac{\Gamma \vdash_{\mathsf{ps}} f : x \to_{A} y}{\Gamma \vdash_{\mathsf{ps}} y : A} (\text{DROP}) \qquad \frac{\Gamma \vdash_{\mathsf{ps}} x : \star}{\Gamma \vdash_{\mathsf{ps}}} (\text{DONE})$$

X

$$(x:\star) (y:\star)(f:x\to y) \vdash_{\sf ps} f:x\to y$$

$$x - g \rightarrow y$$

$$(x:\star) (y:\star)(f:x\to y) (g:x\to y)(a:f\to g) \vdash_{\mathsf{ps}} a:f\to g$$

$$(x:\star) (y:\star)(f:x\to y) (g:x\to y)(a:f\to g) \vdash_{\mathsf{ps}} g:x\to y$$

$$(x:\star) (y:\star)(f:x\to y) (g:x\to y)(a:f\to g)$$
$$(h:x\to y)(b:g\to h) \vdash_{\mathsf{ps}} b:g\to h$$

(START) (EXT) (EXT) (DROP) (EXT) (DROP)

$$(x:\star) (y:\star)(f:x\to y) (g:x\to y)(a:f\to g)$$
$$(h:x\to y)(b:g\to h) \vdash_{\mathsf{ps}} h:x\to y$$

(START) (EXT) (EXT) (DROP) (EXT) (DROP) (DROP)

$$(x:\star) (y:\star)(f:x\to y) (g:x\to y)(a:f\to g)$$
$$(h:x\to y)(b:g\to h) \vdash_{\mathsf{ps}} y:\star$$

$$(x:\star) (y:\star)(f:x\to y) (g:x\to y)(a:f\to g)$$
$$(h:x\to y)(b:g\to h) (z:\star)(k:y\to z) \vdash_{\mathsf{ps}} k:y\to z$$

$$(x:\star) (y:\star)(f:x\to y) (g:x\to y)(a:f\to g)$$

 $(h:x\to y)(b:g\to h) (z:\star)(k:y\to z) \vdash_{\mathsf{ps}} \mathsf{z}:\star$

$$(x:\star) (y:\star)(f:x\to y) (g:x\to y)(a:f\to g)$$

 $(h:x\to y)(b:g\to h) (z:\star)(k:y\to z) \vdash_{ps}$

Term constructors: compositions and coherences

• Idea: Force every pasting scheme to have an essentially unique composite

Term constructors: compositions and coherences

• Idea: Force every pasting scheme to have an essentially unique composite

Existence

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \partial^{-}\Gamma \vdash u : A \quad \partial^{+}\Gamma \vdash v : A \quad \Delta \vdash \gamma : \Gamma}{\Delta \vdash \mathsf{comp}_{\Gamma, u, v}[\gamma] : u[\gamma] \to v[\gamma]} \quad \begin{cases} \mathsf{Var}(\partial^{-}\Gamma) = \mathsf{Var}(u) \cup \mathsf{Var}(A) \\ \mathsf{Var}(\partial^{+}\Gamma) = \mathsf{Var}(v) \cup \mathsf{Var}(A) \end{cases}$$

Term constructors: compositions and coherences

• Idea: Force every pasting scheme to have an essentially unique composite

Existence

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \partial^{-}\Gamma \vdash u : A \quad \partial^{+}\Gamma \vdash v : A \quad \Delta \vdash \gamma : \Gamma}{\Delta \vdash \mathsf{comp}_{\Gamma, u, v}[\gamma] : u[\gamma] \to v[\gamma] } \quad \begin{cases} \mathsf{Var}(\partial^{-}\Gamma) = \mathsf{Var}(u) \cup \mathsf{Var}(A) \\ \mathsf{Var}(\partial^{+}\Gamma) = \mathsf{Var}(v) \cup \mathsf{Var}(A) \end{cases}$$

• Essential uniqueness

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \Gamma \vdash u : A \quad \Gamma \vdash v : A \quad \Delta \vdash \gamma : \Gamma}{\Delta \vdash \mathsf{coh}_{\Gamma,u,v}[\gamma] : u[\gamma] \to v[\gamma]} \quad \begin{cases} \mathsf{Var}(\Gamma) = \mathsf{Var}(u) \cup \mathsf{Var}(A) \\ \mathsf{Var}(\Gamma) = \mathsf{Var}(v) \cup \mathsf{Var}(A) \end{cases}$$

Implementation of CaTT

• A type checker for CaTT is available².

²https://github.com/thibautbenjamin/catt

Implementation of CaTT

- A type checker for CaTT is available².
- Proof-assistant for coherences in ω -categories.

```
coh comp (x : *) (y : *) (f: x -> y) (z : *) (g: y -> z) : x -> z coh id (x : *) : x -> x coh unitl (x : *) (y : *) (f : x -> y) : comp (id x) f -> f
```

²https://github.com/thibautbenjamin/catt

Implementation of CaTT

- A type checker for CaTT is available².
- Proof-assistant for coherences in ω -categories.

```
coh comp (x : *) (y : *) (f: x -> y) (z : *) (g: y -> z) : x -> z coh id (x : *) : x -> x coh unitl (x : *) (y : *) (f : x -> y) : comp (id x) f -> f
```

• Includes proof automation and term synthesis.

²https://github.com/thibautbenjamin/catt

Presentation of computads

Computads translate a the idea of freeness for higher categories.

 X_1

1-generators

 X_0

0-generators

Computads translate a the idea of freeness for higher categories.

3-generators 2-generators 1-generators 0-generators

Computads translate a the idea of freeness for higher categories.

:

Description of $Cell_n(X_{\leq n})$

The sets $Cell_n(X_{\leq n})$ and the source and target maps are given by:

:

• $\operatorname{var} x$ where $x \in X_n$

$$X_3$$
 : X_2 $Cell_2(X_{\leq 2})$ X_1 $Cell_1(X_{\leq 1})$

$$s(\operatorname{var} x) = s(x)$$
 $t(\operatorname{var} x) = t(x)$

Description of $Cell_n(X_{\leq n})$

The sets $Cell_n(X_{\leq n})$ and the source and target maps are given by:

• var x where $x \in X_n$

$$s(\operatorname{var} x) = s(x)$$
 $t(\operatorname{var} x) = t(x)$

• $\operatorname{coh}(B,(u,v),\gamma)$, where B is a Batanin tree, $u,v\in\operatorname{Cell}_{n-1}(\operatorname{Pos}B)$ satisfying conditions similar to CaTT, and $\gamma:\operatorname{Cell}(\operatorname{Pos}(B))\to X$

$$s(\operatorname{coh}(B,(u,v),\gamma)) = \gamma(u)$$
$$t(\operatorname{coh}(B,(u,v),\gamma)) = \gamma(v)$$

The category Comp of computads

The category Comp

objects: computads

morphisms: $f: X \to Y = \text{collection of maps } f_n: X_n \to \text{Cell}_n(Y)$

 $respecting \ source \ and \ target$

The category Comp of computads

The category Comp

objects: computads

morphisms: $f: X \to Y = \text{collection of maps } f_n: X_n \to \text{Cell}_n(Y)$

respecting source and target

 $morphisms \simeq substitutions$

The category Comp of computads

The category Comp

objects: computads

morphisms: $f: X \to Y = \text{collection of maps } f_n: X_n \to \text{Cell}_n(Y)$

respecting source and target

morphisms \simeq substitutions

• CwF structure on Comp^{op}:

types: pair of parallel cells in Cell(X)

terms: cells in Cell(X) with prescribed source/target

extension: adding new generator

• The descriptions of computads comes with an associated monads on globular sets

- The descriptions of computads comes with an associated monads on globular sets
- \bullet Algebras for this monad are weak $\omega\text{-categories}$

- The descriptions of computads comes with an associated monads on globular sets
- ullet Algebras for this monad are weak ω -categories
- \bullet Every $\omega\text{-category}$ is weakly equivalent to a computad

- The descriptions of computads comes with an associated monads on globular sets
- ullet Algebras for this monad are weak ω -categories
- \bullet Every $\omega\text{-category}$ is weakly equivalent to a computad
- Computads are the cofibrant objects.

Comparison result

Summary and comparison

CaTT	description of computads
Finite	Infinite
Ordered	Unordered
Structural induction	Induction on dimension
Pasting schemes	Batanin trees
Named variables	Unnamed elements

Summary and comparison

CaTT	description of computads
Finite	Infinite
Ordered	Unordered
Structural induction	Induction on dimension
Pasting schemes	Batanin trees
Named variables	Unnamed elements

• Name of the elements: irrelevant with de Bruijn levels.

Summary and comparison

CaTT	description of computads
Finite	Infinite
Ordered	Unordered
Structural induction	Induction on dimension
Pasting schemes	Batanin trees
Named variables	Unnamed elements

- Name of the elements: irrelevant with de Bruijn levels.
- Pasting schemes and Batanin trees equivalent.

Contribution

Theorem (B., Markakis, Sarti)

There exists a fully faithful morphism of CwF from S_{CaTT} to Comp^{op}. Its essential image is made of finite computads.

CaTT contexts are finite computads

Conclusion

ullet Weak ω -categories admit many different definitions, using various tools: monads, coherator, dependent type theory, inductive description of computads.

Conclusion

- Weak ω -categories admit many different definitions, using various tools: monads, coherator, dependent type theory, inductive description of computads.
- Network of connections, that we completed by showing that CaTT defines finite computads.

Conclusion

- Weak ω -categories admit many different definitions, using various tools: monads, coherator, dependent type theory, inductive description of computads.
- Network of connections, that we completed by showing that CaTT defines finite computads.
- Makes an explicit connection between algebras for the monad and models of the dependent type theory.